On the numerical solution of the regularized Birkhoff equations

Author:
Christoph Börgers

Journal:
Math. Comp. **53** (1989), 141-156

MSC:
Primary 76C05; Secondary 76-08, 76D25

DOI:
https://doi.org/10.1090/S0025-5718-1989-0969481-2

MathSciNet review:
969481

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Birkhoff equations for the evolution of vortex sheets are regularized in a way proposed by Krasny. The convergence of numerical approximations to a fixed regularization is studied theoretically and numerically. The numerical test problem is a two-dimensional inviscid jet.

**[1]**Frederick H. Abernathy and Richard E. Kronauer,*The formation of vortex streets*, J. Fluid Mech.**13**(1962), 1–20. MR**0138296**, https://doi.org/10.1017/S0022112062000452**[2]**H. Aref & E. D. Siggia, "Evolution and breakdown of a vortex street in two dimensions,"*J. Fluid Mech.*, v. 109, 1981, pp. 435-463.**[3]**Garrett Birkhoff,*Helmholtz and Taylor instability*, Proc. Sympos. Appl. Math., Vol. XIII, American Mathematical Society, Providence, R.I., 1962, pp. 55–76. MR**0137423****[4]**D. R. Boldman & P. F. Brinich & M. E. Goldstein, "Vortex shedding from a blunt trailing edge with equal and unequal external mean velocities,"*J. Fluid Mech.*, v. 75, 1976, pp. 721-735.**[5]**Russel E. Caflisch and John S. Lowengrub,*Convergence of the vortex method for vortex sheets*, SIAM J. Numer. Anal.**26**(1989), no. 5, 1060–1080. MR**1014874**, https://doi.org/10.1137/0726059**[6]**Russel E. Caflisch and Oscar F. Orellana,*Long time existence for a slightly perturbed vortex sheet*, Comm. Pure Appl. Math.**39**(1986), no. 6, 807–838. MR**859274**, https://doi.org/10.1002/cpa.3160390605**[7]**Alexandre Joel Chorin,*Numerical study of slightly viscous flow*, J. Fluid Mech.**57**(1973), no. 4, 785–796. MR**0395483**, https://doi.org/10.1017/S0022112073002016**[8]**C. William Gear,*Numerical initial value problems in ordinary differential equations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR**0315898****[9]**Robert Krasny,*A study of singularity formation in a vortex sheet by the point-vortex approximation*, J. Fluid Mech.**167**(1986), 65–93. MR**851670**, https://doi.org/10.1017/S0022112086002732**[10]**R. Krasny, "Desingularization of periodic vortex sheet roll-up,"*J. Comput. Phys.*, v. 65, 1986, pp. 292-313.**[11]**Robert Krasny,*Computation of vortex sheet roll-up*, Vortex methods (Los Angeles, CA, 1987) Lecture Notes in Math., vol. 1360, Springer, Berlin, 1988, pp. 9–22. MR**979557**, https://doi.org/10.1007/BFb0089767**[12]**E. Meiburg, "On the role of subharmonic perturbations in the far wake,"*J. Fluid Mech.*, v. 177, 1987, pp. 83-107.**[13]**D. W. Moore,*The spontaneous appearance of a singularity in the shape of an evolving vortex sheet*, Proc. Roy. Soc. London Ser. A**365**(1979), no. 1720, 105–119. MR**527594**, https://doi.org/10.1098/rspa.1979.0009**[14]**C. Sulem, P.-L. Sulem, C. Bardos, and U. Frisch,*Finite time analyticity for the two- and three-dimensional Kelvin-Helmholtz instability*, Comm. Math. Phys.**80**(1981), no. 4, 485–516. MR**628507**

Retrieve articles in *Mathematics of Computation*
with MSC:
76C05,
76-08,
76D25

Retrieve articles in all journals with MSC: 76C05, 76-08, 76D25

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1989-0969481-2

Article copyright:
© Copyright 1989
American Mathematical Society