On the numerical solution of the regularized Birkhoff equations

Author:
Christoph Börgers

Journal:
Math. Comp. **53** (1989), 141-156

MSC:
Primary 76C05; Secondary 76-08, 76D25

DOI:
https://doi.org/10.1090/S0025-5718-1989-0969481-2

MathSciNet review:
969481

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Birkhoff equations for the evolution of vortex sheets are regularized in a way proposed by Krasny. The convergence of numerical approximations to a fixed regularization is studied theoretically and numerically. The numerical test problem is a two-dimensional inviscid jet.

**[1]**F. H. Abernathy & R. E. Kronauer, "The formation of vortex streets,"*J. Fluid Mech.*, v. 13, 1962, pp. 1-20. MR**0138296 (25:1743)****[2]**H. Aref & E. D. Siggia, "Evolution and breakdown of a vortex street in two dimensions,"*J. Fluid Mech.*, v. 109, 1981, pp. 435-463.**[3]**G. Birkhoff,*Helmholtz and Taylor Instability*, Proc. Sympos. Appl. Math., vol. 13, Amer. Math. Soc., Providence, R. I., 1962, pp. 55-76. MR**0137423 (25:875)****[4]**D. R. Boldman & P. F. Brinich & M. E. Goldstein, "Vortex shedding from a blunt trailing edge with equal and unequal external mean velocities,"*J. Fluid Mech.*, v. 75, 1976, pp. 721-735.**[5]**R. Caflisch & J. Lowengrub,*Convergence of the Vortex Method for Vortex Sheets*, Preprint, 1988. MR**1014874 (91g:76073)****[6]**R. Caflisch & O. Orellana, "Long-time existence for a slightly perturbed vortex sheet,"*Comm. Pure Appl. Math.*, v. 39, 1986, pp. 807-838. MR**859274 (87m:76018)****[7]**A. J. Chorin, "Numerical study of slightly viscous flow,"*J. Fluid Mech.*, v. 57, 1973, pp. 785-796. MR**0395483 (52:16280)****[8]**C. W. Gear,*Numerical Initial Value Problems in Ordinary Differential Equations*, Prentice-Hall, Englewood Cliffs, N. J., 1971. MR**0315898 (47:4447)****[9]**R. Krasny, "A study of singularity formation in a vortex sheet by the point-vortex approximation,"*J. Fluid Mech.*, v. 167, 1986, pp. 65-93. MR**851670 (87g:76028)****[10]**R. Krasny, "Desingularization of periodic vortex sheet roll-up,"*J. Comput. Phys.*, v. 65, 1986, pp. 292-313.**[11]**R. Krasny, "Computation of vortex sheet roll-up in the Trefftz plane,"*J. Fluid Mech.*, v. 184, 1987, pp. 123-155. MR**979557****[12]**E. Meiburg, "On the role of subharmonic perturbations in the far wake,"*J. Fluid Mech.*, v. 177, 1987, pp. 83-107.**[13]**D. W. Moore, "The spontaneous appearance of a singularity in the shape of an evolving vortex sheet,"*Proc. Roy. Soc. London Ser. A*, v. 365, 1979, pp. 105-119. MR**527594 (80b:76006)****[14]**C. Sulem, P. L. Sulem, C. Bardos & U. Frisch, "Finite time analyticity for the two- and three-dimensional Kelvin-Helmholtz instability,"*Comm. Math. Phys.*, v. 80, 1981, pp. 485-516. MR**628507 (83d:76012)**

Retrieve articles in *Mathematics of Computation*
with MSC:
76C05,
76-08,
76D25

Retrieve articles in all journals with MSC: 76C05, 76-08, 76D25

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1989-0969481-2

Article copyright:
© Copyright 1989
American Mathematical Society