The construction of preconditioners for elliptic problems by substructuring. IV
Authors:
James H. Bramble, Joseph E. Pasciak and Alfred H. Schatz
Journal:
Math. Comp. 53 (1989), 124
MSC:
Primary 65N30; Secondary 65F35
MathSciNet review:
970699
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We consider the problem of solving the algebraic system of equations which result from the discretization of elliptic boundary value problems defined on threedimensional Euclidean space. We develop preconditioners for such systems based on substructuring (also known as domain decomposition). The resulting algorithms are well suited to emerging parallel computing architectures. We describe two techniques for developing these preconditioners. A theory for the analysis of the condition number for the resulting preconditioned system is given and the results of supporting numerical experiments are presented.
 [1]
G.
P. Astrahancev, The method of fictitious domains for a second order
elliptic equation with natural boundary conditions, Ž.
Vyčisl. Mat. i Mat. Fiz. 18 (1978), no. 1,
118–125, 269 (Russian). MR 0468228
(57 #8066)
 [2]
Petter
E. Bjørstad and Olof
B. Widlund, Iterative methods for the solution of elliptic problems
on regions partitioned into substructures, SIAM J. Numer. Anal.
23 (1986), no. 6, 1097–1120. MR 865945
(88h:65188), http://dx.doi.org/10.1137/0723075
 [3]
J.
H. Bramble, A second order finite difference analog of the first
biharmonic boundary value problem, Numer. Math. 9
(1966), 236–249. MR 0205478
(34 #5305)
 [4]
J. H. Bramble, R. E. Ewing, J. E. Pasciak & A. H. Schatz, "A preconditioning technique for the efficient solution of problems with local grid refinement," Comput. Methods Appl. Mech. Engrg., v. 67, 1988, pp. 149159.
 [5]
J.
H. Bramble, J.
E. Pasciak, and A.
H. Schatz, An iterative method for elliptic
problems on regions partitioned into substructures, Math. Comp. 46 (1986), no. 174, 361–369. MR 829613
(88a:65123), http://dx.doi.org/10.1090/S00255718198608296130
 [6]
J.
H. Bramble, J.
E. Pasciak, and A.
H. Schatz, The construction of preconditioners
for elliptic problems by substructuring. I, Math. Comp. 47 (1986), no. 175, 103–134. MR 842125
(87m:65174), http://dx.doi.org/10.1090/S00255718198608421253
 [7]
J.
H. Bramble, J.
E. Pasciak, and A.
H. Schatz, The construction of preconditioners
for elliptic problems by substructuring. II, Math. Comp. 49 (1987), no. 179, 1–16. MR 890250
(88j:65248), http://dx.doi.org/10.1090/S00255718198708902504
 [8]
James
H. Bramble, Joseph
E. Pasciak, and Alfred
H. Schatz, The construction of preconditioners
for elliptic problems by substructuring. III, Math. Comp. 51 (1988), no. 184, 415–430. MR 935071
(89e:65118), http://dx.doi.org/10.1090/S0025571819880935071X
 [9]
Q. V. Dihn, R. Glowinski & J. Périaux, "Solving elliptic problems by domain decomposition methods," in Elliptic Problem Solvers II (G. Birkhoff and A. Schoenstadt, eds.), Academic Press, New York, 1984, pp. 395426.
 [10]
G. H. Golub & D. Meyers, The Use of Preconditioning Over Irregular Regions, Proc. 6th Internat. Conf. Comput. Meth. Sci. and Engrg., Versailles, France, 1983.
 [11]
W. D. Gropp & D. E. Keyes, A Comparison on Domain Decomposition Techniques for Elliptic Partial Differential Equations and the Parallel Implementation, Research Report YALEU/DCS/RR448, 1985.
 [12]
G. H. Hardy, J. E. Littlewood & G. Pólya, Inequalities, Cambridge Univ. Press, New York, 1952.
 [13]
S.
G. Kreĭn and Ju.
I. Petunin, Scales of Banach spaces, Uspehi Mat. Nauk
21 (1966), no. 2 (128), 89–168 (Russian). MR 0193499
(33 #1719)
 [14]
J.L.
Lions and E.
Magenes, Problèmes aux limites non homogènes et
applications. Vol. 1, Travaux et Recherches Mathématiques, No.
17, Dunod, Paris, 1968 (French). MR 0247243
(40 #512)
 [15]
S.
McCormick and J.
Thomas, The fast adaptive composite grid (FAC)
method for elliptic equations, Math. Comp.
46 (1986), no. 174, 439–456. MR 829618
(87e:65070), http://dx.doi.org/10.1090/S0025571819860829618X
 [16]
J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Academia, Prague, 1967.
 [17]
Richard
S. Varga, Matrix iterative analysis, PrenticeHall, Inc.,
Englewood Cliffs, N.J., 1962. MR 0158502
(28 #1725)
 [1]
 G. P. Astrakhantsev, "Method for fictitious domains for a secondorder elliptic equation with natural boundary conditions," U.S.S.R. Comput. Math. and Math. Phys., v. 18, 1978, pp. 114121. MR 0468228 (57:8066)
 [2]
 P. E. Bjøstad & O. B. Widlund, "Iterative methods for the solution of elliptic problems on regions partitioned into substructures," SIAM J. Numer. Anal., v. 23, 1986, pp. 10971120. MR 865945 (88h:65188)
 [3]
 J. H. Bramble, "A second order finite difference analogue of the first biharmonic boundary value problem," Numer. Math., v. 9, 1966, pp. 236249. MR 0205478 (34:5305)
 [4]
 J. H. Bramble, R. E. Ewing, J. E. Pasciak & A. H. Schatz, "A preconditioning technique for the efficient solution of problems with local grid refinement," Comput. Methods Appl. Mech. Engrg., v. 67, 1988, pp. 149159.
 [5]
 J. H. Bramble, J. E. Pasciak & A. H. Schatz, "An iterative method for elliptic problems on regions partitioned into substructures," Math. Comp., v. 46, 1986, pp. 361369. MR 829613 (88a:65123)
 [6]
 J. H. Bramble, J. E. Pasciak & A. H. Schatz, "The construction of preconditioners for elliptic problems by substructuring, I," Math. Comp., v. 47, 1986, pp. 103134. MR 842125 (87m:65174)
 [7]
 J. H. Bramble, J. E. Pasciak & A. H. Schatz, "The construction of preconditioners for elliptic problems by substructuring, II," Math. Comp., v. 49, 1987, pp. 116. MR 890250 (88j:65248)
 [8]
 J. H. Bramble, J. E. Pasciak & A. H. Schatz, "The construction of preconditioners for elliptic problems by substructuring, III," Math. Comp., v. 51, 1988, pp. 415430. MR 935071 (89e:65118)
 [9]
 Q. V. Dihn, R. Glowinski & J. Périaux, "Solving elliptic problems by domain decomposition methods," in Elliptic Problem Solvers II (G. Birkhoff and A. Schoenstadt, eds.), Academic Press, New York, 1984, pp. 395426.
 [10]
 G. H. Golub & D. Meyers, The Use of Preconditioning Over Irregular Regions, Proc. 6th Internat. Conf. Comput. Meth. Sci. and Engrg., Versailles, France, 1983.
 [11]
 W. D. Gropp & D. E. Keyes, A Comparison on Domain Decomposition Techniques for Elliptic Partial Differential Equations and the Parallel Implementation, Research Report YALEU/DCS/RR448, 1985.
 [12]
 G. H. Hardy, J. E. Littlewood & G. Pólya, Inequalities, Cambridge Univ. Press, New York, 1952.
 [13]
 S. G. Krein & Y. I. Petunin, Scales of Banach Spaces, Russian Math. Surveys, vol. 21, 1966, pp. 85160. MR 0193499 (33:1719)
 [14]
 J. L. Lions & E. Magenes, Problèmes aux Limites non Homogènes et Applications, vol. 1, Dunod, Paris, 1968. MR 0247243 (40:512)
 [15]
 S. McCormick & J. Thomas, "The fast adaptive composite grid (FAC) method for elliptic equations," Math. Comp., v. 46, 1986, pp. 439456. MR 829618 (87e:65070)
 [16]
 J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Academia, Prague, 1967.
 [17]
 R. S. Varga, Matrix Iterative Analysis, PrenticeHall, Englewood Cliffs, N.J., 1962. MR 0158502 (28:1725)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65N30,
65F35
Retrieve articles in all journals
with MSC:
65N30,
65F35
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198909706993
PII:
S 00255718(1989)09706993
Article copyright:
© Copyright 1989
American Mathematical Society
