Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Computing all power integral bases of cubic fields


Authors: I. Gaál and N. Schulte
Journal: Math. Comp. 53 (1989), 689-696
MSC: Primary 11R16; Secondary 11D25, 11Y40
DOI: https://doi.org/10.1090/S0025-5718-1989-0979943-X
MathSciNet review: 979943
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Applying Baker's effective method and the reduction procedure of Baker and Davenport, we present several lists of solutions of index form equations in (totally real and complex) cubic algebraic number fields. These solutions yield all power integral bases of these fields.


References [Enhancements On Off] (What's this?)

  • [1] G. Archinard, "Extensions cubiques cycliques de Q dont l'anneau des entiers est monogène," Enseign. Math., v. 20, 1974, pp. 179-203. MR 0374083 (51:10283)
  • [2] A. Baker & H. Davenport, "The equations $ 3{x^2} - 2 = {y^2}$ and $ 8{x^2} - 7 = {z^2}$," Quart. J. Math. Oxford Ser. (2), v. 20, 1969, pp. 129-137. MR 0248079 (40:1333)
  • [3] J. Buchmann, "A generalization of Voronoi's unit algorithm. I," J. Number Theory, v. 20, 1985, pp. 177-191. MR 790781 (86g:11062a)
  • [4] D. S. Dummit & H. Kisilevsky, "Indices in cyclic cubic fields," in Number Theory and Algebra, Academic Press, New York, 1977, pp. 29-42. MR 0460272 (57:266)
  • [5] B. N. Delone, "Über die Darstellung der Zahlen durch die binären kubischen Formen von negativer Diskriminante," Math. Z., v. 31, 1930, pp. 1-26. MR 1545095
  • [6] B. N. Delone & D. K. Faddeev, The Theory of Irrationalities of the Third Degree, Transl. Math. Monographs, no. 10, Amer. Math. Soc., Providence, R.I., 1964. MR 0160744 (28:3955)
  • [7] W. J. Ellison, Recipes for Solving Diophantine Problems by Baker's Method, Sém. Theorie Nombres, Année 1970-1971, exp. no. 11.
  • [8] W. J. Ellison, F. Ellison, J. Pesek, C. E. Stahl & D. S. Stall, "The Diophantine equation $ {y^2} + k = {x^3}$," J. Number Theory, v. 4, 1972, pp. 107-117. MR 0316376 (47:4923)
  • [9] V. Ennola & R. Turunen, "On totally real cubic fields," Math. Comp., v. 44, 1985, pp. 495-518. MR 777281 (86e:11100)
  • [10] U. Fincke & M. Pohst, A Procedure for Determining Algebraic Integers of Given Norm, EUROCAL 83, Lecture Notes in Computer Science, vol. 162, Springer-Verlag, Berlin and New York, 1983, pp. 194-202. MR 774811 (86k:11078)
  • [11] I. Gaál, "On the resolution of inhomogeneous norm form equations in two dominating variables," Math. Comp., v. 51, 1988, pp. 359-373. MR 942162 (89m:11030)
  • [12] M. N. Gras, Sur les Corps Cubiques Cycliques dont l'Anneau des Entiers est Monogène, Publ. Math. Fac. Sci. Besançon, 1973.
  • [13] M. N. Gras, Lien Entre le Groupe des Unités et la Monogèneité des Corps Cubiques Cycliques, Sém. Théorie Nombr. Besançon, Année 1975-76.
  • [14] K. Györy, "Sur les polynomes à coefficients entiers et de discriminant donné. III," Publ. Math. (Debrecen), v. 23, 1976, pp. 141-165. MR 0437491 (55:10419c)
  • [15] K. Györy, Résultats Effectives sur la Représentation des Entiers par des Formes Décomposables, Queen's Papers in Pure and Applied Math., No. 56, Kingston, Canada, 1980.
  • [16] K. Györy, "Bounds for the solutions of norm form, discriminant form and index form equations in finitely generated integral domains," Acta Math. Hungar., v. 42, 1983, pp. 45-80. MR 716553 (85f:11020)
  • [17] K. Györy & Z. Z. Papp, "On discriminant form and index form equations," Studia Sci. Math. Hungar., v. 12, 1977, pp. 47-60. MR 568462 (81g:10034)
  • [18] B. Kovács, "Canonical number systems in algebraic number fields," Acta Math. Acad. Sci. Hungar., v. 37, 1981, pp. 405-407. MR 619892 (82j:12014)
  • [19] B. Kovács & A. Pethö, "Number systems in integral domains, especially in orders of algebraic number fields," in preparation.
  • [20] T. Nagell, "Darstellung ganzer Zahlen durch binäre kubische Formen mit negativer Diskriminante," Math. Z., v. 28, 1928, pp. 10-29. MR 1544935
  • [21] A. Pethö, "On the resolution of Thue inequalities," J. Symbolic Comp., v. 4, 1987, pp. 103-109. MR 908418 (89b:11030)
  • [22] A. Pethö, On the Representation of 1 by Binary Cubic Forms with Positive Discriminant, in Proceedings Journées Arithmétique, Ulm. (To appear.) MR 1009801 (90k:11027)
  • [23] A. Pethö & R. Schulenberg, "Effektives Lösen von Thue Gleichungen," Publ. Math. (Debrecen), v. 34, 1987, pp. 189-196. MR 934900 (89c:11044)
  • [24] R. P. Steiner, "On Mordell's equation $ {y^2} - k = {x^3}$: A problem of Stolarsky," Math. Comp., v. 46, 1986, pp. 703-714. MR 829640 (87e:11041)
  • [25] L. A. Trelina, "On the greatest prime factor of an index form," Dokl. Akad. Nauk BSSR, v. 21, 1977, pp. 975-976. (Russian) MR 0560495 (58:27754)
  • [26] M. Waldschmidt, "A lower bound for linear forms in logarithms," Acta Arith., v. 37, 1980, pp. 257-283. MR 598881 (82h:10049)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11R16, 11D25, 11Y40

Retrieve articles in all journals with MSC: 11R16, 11D25, 11Y40


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1989-0979943-X
Keywords: Computer solution of Diophantine equations, index form equation, Thue equation, Davenport's lemma, power integral bases
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society