Complex variable and regularization methods of inversion of the Laplace transform
Authors:
D. D. Ang, John Lund and Frank Stenger
Journal:
Math. Comp. 53 (1989), 589608
MSC:
Primary 65R10; Secondary 44A10
MathSciNet review:
983558
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper three methods are derived for approximating f, given its Laplace transform g on , i.e., . Assuming that , the first method is based on a Sinclike rational approximation of g, the second on a Sinc solution of the integral equation via standard regularization, and the third method is based on first converting to a convolution integral over , and then finding a Sinc approximation to f via the application of a special regularization procedure to solve the Fourier transform problem. We also obtain bounds on the error of approximation, which depend on both the method of approximation and the regularization parameter.
 [1]
Richard
Bellman, Robert
E. Kalaba, and Jo
Ann Lockett, Numerical inversion of the Laplace transform:
Applications to biology, economics, engineering and physics, American
Elsevier Publishing Co., Inc., New York, 1966. MR 0205454
(34 #5282)
 [2]
B. S. Berger, "Inversion of the ndimensional Laplace transform," Math. Comp., v. 20, 1966, pp. 418421.
 [3]
B. S. Berger, "The inversion of the Laplace transform with application to the vibrations of continuous elastic bodies," J. Appl. Mech., v. 35, 1968, pp. 837839.
 [4]
B. S. Berger & S. Duangudom, "A technique for increasing the accuracy of the numerical inversion of the Laplace transform with applications," J. Appl. Mech., v. 40, 1973, pp. 11101112.
 [5]
Claude
Brezinski and Jeannette
Van Iseghem, Padétype approximants and linear functional
transformations, Rational approximation and interpolation (Tampa,
Fla., 1983) Lecture Notes in Math., vol. 1105, Springer, Berlin,
1984, pp. 100–108. MR 783264
(86e:41027), http://dx.doi.org/10.1007/BFb0072402
 [6]
J. W. Cooley, P. A. W. Lewis & P. D. Welch, "The fast Fourier transform algorithm: Programming considerations in the calculation of sine, cosine, and Laplace transforms," J. Sound Vibration, v. 12, 1970, pp. 315337.
 [7]
James
W. Cooley and John
W. Tukey, An algorithm for the machine
calculation of complex Fourier series, Math.
Comp. 19 (1965),
297–301. MR 0178586
(31 #2843), http://dx.doi.org/10.1090/S00255718196501785861
 [8]
Kenny
S. Crump, Numerical inversion of Laplace transforms using a Fourier
series approximation, J. Assoc. Comput. Mach. 23
(1976), no. 1, 89–96. MR 0436552
(55 #9495)
 [9]
A.
R. Davies, On the maximum likelihood regularization of Fredholm
convolution equations of the first kind, Treatment of integral
equations by numerical methods (Durham, 1982), Academic Press, London,
1982, pp. 95–105. MR
755345
 [10]
Brian
Davies and Brian
Martin, Numerical inversion of the Laplace transform: a survey and
comparison of methods, J. Comput. Phys. 33 (1979),
no. 1, 1–32. MR 549576
(80h:65106), http://dx.doi.org/10.1016/00219991(79)900251
 [11]
H.
Dubner and J.
Abate, Numerical inversion of Laplace transforms by relating them
to the finite Fourier cosine transform, J. Assoc. Comput. Mach.
15 (1968), 115–123. MR 0235726
(38 #4029)
 [12]
A. Erdélyi, "Inversion formula for the Laplace transform," Philos. Mag., v. 34, 1943, pp. 533537.
 [13]
William
Feller, An introduction to probability theory and its applications.
Vol. II., Second edition, John Wiley & Sons, Inc., New
YorkLondonSydney, 1971. MR 0270403
(42 #5292)
 [14]
D.
S. Gilliam, J.
R. Schulenberger, and J.
R. Lund, Spectral representation of the Laplace transform and
related operators in 𝐿₂(𝑅₊),
Computational and combinatorial methods in systems theory (Stockholm,
1985), NorthHolland, Amsterdam, 1986, pp. 69–73. MR 923997
(89b:47073)
 [15]
Richard
R. Goldberg and Richard
S. Varga, Moebius inversion of Fourier transforms, Duke Math.
J. 23 (1956), 553–559. MR 0080800
(18,304b)
 [16]
S.
Ȧ. Gustafson and G.
Dahlquist, On the computation of slowly convergent Fourier
integrals, Methoden und Verfahren der mathematischen Physik, Band 6,
Bibliographisches Inst., Mannheim, 1972, pp. 93–112. B.
I.Hochschultaschenbücher, No. 725. MR 0359377
(50 #11831)
 [17]
Peter
Henrici, Applied and computational complex analysis. Vol. 2,
Wiley Interscience [John Wiley & Sons], New YorkLondonSydney, 1977.
Special functions—integral
transforms—asymptotics—continued fractions. MR 0453984
(56 #12235)
 [18]
F.
R. de Hoog, J.
H. Knight, and A.
N. Stokes, An improved method for numerical inversion of Laplace
transforms, SIAM J. Sci. Statist. Comput. 3 (1982),
no. 3, 357–366. MR 667833
(84h:65113), http://dx.doi.org/10.1137/0903022
 [19]
Yasuhiko
Ikebe, The Galerkin method for the numerical solution of Fredholm
integral equations of the second kind, SIAM Rev. 14
(1972), 465–491. MR 0307515
(46 #6635)
 [20]
R. E. Jones, Solving Linear Algebraic Systems Arising in the Solution of Integral Equations of the First Kind, Ph.D. Dissertation, University of New Mexico, 1985.
 [21]
I.
M. Longman, Note on a method for computing infinite integrals of
oscillatory functions, Proc. Cambridge Philos. Soc.
52 (1956), 764–768. MR 0082193
(18,515f)
 [22]
Yudell
L. Luke, On the computation of oscillatory integrals, Proc.
Cambridge Philos. Soc. 50 (1954), 269–277. MR 0062518
(15,992b)
 [23]
J. Ross MacDonald, "Accelerated convergence, divergence, iteration, extrapolation, and curve fitting," J. Appl. Phys., v. 35, 1964, pp. 30343041.
 [24]
Martin
J. Marsden and Gerald
D. Taylor, Numerical evaluation of Fourier integrals,
Numerische Methoden der Approximationstheorie, Band 1 (Tagung, Oberwolfach,
1971) Birkhäuser, Basel, 1972, pp. 61–76. Internat.
Schriftenreihe Numer. Math., Band 16. MR 0386234
(52 #7092)
 [25]
J.
T. Marti, On a regularization method for Fredholm equations of the
first kind using Sobolev spaces, Treatment of integral equations by
numerical methods (Durham, 1982), Academic Press, London, 1982,
pp. 59–66. MR
755342
 [26]
Piero
de Mottoni and Giorgio
Talenti, Stabilization and error bounds for the inverse Laplace
transform, Numer. Funct. Anal. Optim. 3 (1981),
no. 3, 265–283. MR 629946
(82h:65093), http://dx.doi.org/10.1080/01630568108816090
 [27]
M.
Z. Nashed and Grace
Wahba, Some exponentially decreasing error bounds for a numerical
inversion of the Laplace transform, J. Math. Anal. Appl.
52 (1975), no. 3, 660–668. MR 0431668
(55 #4663)
 [28]
National Bureau of Standards, Handbook of Mathematical Functions, vol. 55, Applied Math. Series, Pitman, Boston, 1964.
 [29]
Athanasios
Papoulis, A new method of inversion of the Laplace transform,
Quart. Appl. Math. 14 (1957), 405–414. MR 0082734
(18,602e)
 [30]
R.
Piessens, Numerical inversion of the Laplace transform, IEEE
Trans. Automatic Control AC14 (1969), 299–301. MR 0245178
(39 #6490)
 [31]
Emil
L. Post, Generalized differentiation,
Trans. Amer. Math. Soc. 32 (1930),
no. 4, 723–781. MR
1501560, http://dx.doi.org/10.1090/S0002994719301501560X
 [32]
Frigyes
Riesz and Béla
Sz.Nagy, Functional analysis, Frederick Ungar Publishing Co.,
New York, 1955. Translated by Leo F. Boron. MR 0071727
(17,175i)
 [33]
Herbert
E. Salzer, Tables for the numerical calculation of inverse Laplace
transforms., J. Math. and Phys. 37 (1958),
89–109. MR
0102907 (21 #1692)
 [34]
Herbert
E. Salzer, Additional formulas and tables for orthogonal
polynomials originating from inversion integrals, J. Math. and Phys.
40 (1961), 72–86. MR 0129576
(23 #B2612)
 [35]
R.
A. Schapery, Approximate methods of transform inversion for
viscoelastic stress analysis, Proc. 4th U.S. Nat. Congr. Appl. Mech.
(Univ. California, Berkeley, Calif., 1962) Amer. Soc. Mech. Engrs., New
York, 1962, pp. 1075–1085. MR 0153175
(27 #3144)
 [36]
C.
J. Shirtliffe and D.
G. Stephenson, A computer oriented adaption of Salzer’s
method for inverting Laplace transforms, J. Math. and Phys.
40 (1961), 135–141. MR 0150949
(27 #935)
 [37]
Kishore
Singhal and Jiri
Vlach, Computation of time domain response by numerical inversion
of the Laplace transform, J. Franklin Inst. 299
(1975), 109–126. MR 0375744
(51 #11934)
 [38]
M. Silverberg, "Improving the efficiency of Laplace transform inversion for network analysis," Electron. Lett., v. 6, 1970, pp. 105106.
 [39]
Frank
Stenger, Numerical methods based on Whittaker cardinal, or sinc
functions, SIAM Rev. 23 (1981), no. 2,
165–224. MR
618638 (83g:65027), http://dx.doi.org/10.1137/1023037
 [40]
Frank
Stenger, Explicit, nearly optimal, linear
rational approximation with preassigned poles, Math. Comp. 47 (1986), no. 175, 225–252. MR 842132
(87g:41034), http://dx.doi.org/10.1090/S00255718198608421320
 [41]
Andrey
N. Tikhonov and Vasiliy
Y. Arsenin, Solutions of illposed problems, V. H. Winston
& Sons, Washington, D.C.: John Wiley & Sons, New YorkToronto,
Ont.London, 1977. Translated from the Russian; Preface by translation
editor Fritz John; Scripta Series in Mathematics. MR 0455365
(56 #13604)
 [42]
Manfred
R. Trummer, A method for solving illposed linear operator
equations, SIAM J. Numer. Anal. 21 (1984),
no. 4, 729–737. MR 749367
(85m:65051), http://dx.doi.org/10.1137/0721049
 [43]
D. V. Widder, The Laplace Transform, Princeton Univ. Press, Princeton, N.J., 1936.
 [44]
V. Zakian, "Numerical inversion of Laplace transform," Electron. Lett., v. 5, 1969, pp. 120121.
 [45]
V. Zakian, "Optimization of numerical inversion of Laplace transform," Electron. Lett., v. 6, 1970, pp. 677679.
 [46]
V.
Zakian and D.
R. Gannon, Leastsquares optimisation of numerical inversion of
Laplace transforms, Electron. Lett. 7 (1971),
70–71. MR
0319370 (47 #7914)
 [1]
 R. Bellman, R. E. Kalaba & J. A. Lockett, Numerical Inversion of the Laplace Transform, American Elsevier, New York, 1966. MR 0205454 (34:5282)
 [2]
 B. S. Berger, "Inversion of the ndimensional Laplace transform," Math. Comp., v. 20, 1966, pp. 418421.
 [3]
 B. S. Berger, "The inversion of the Laplace transform with application to the vibrations of continuous elastic bodies," J. Appl. Mech., v. 35, 1968, pp. 837839.
 [4]
 B. S. Berger & S. Duangudom, "A technique for increasing the accuracy of the numerical inversion of the Laplace transform with applications," J. Appl. Mech., v. 40, 1973, pp. 11101112.
 [5]
 C. Brezinski & J. Van Iseghem, "Padétype approximants and linear functional transformations," in Rational Approximation and Interpolation, Lecture Notes in Math., vol. 1105, SpringerVerlag, Berlin and New York, 1984, pp. 100108. MR 783264 (86e:41027)
 [6]
 J. W. Cooley, P. A. W. Lewis & P. D. Welch, "The fast Fourier transform algorithm: Programming considerations in the calculation of sine, cosine, and Laplace transforms," J. Sound Vibration, v. 12, 1970, pp. 315337.
 [7]
 J. W. Cooley & J. W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Math. Comp., v. 19, 1965, pp. 297301. MR 0178586 (31:2843)
 [8]
 K. S. Crump, "Numerical inversion of Laplace transforms using Fourier series approximation," J. Assoc. Comput. Mach., v. 23, 1976, pp. 8996. MR 0436552 (55:9495)
 [9]
 A. R. Davies, "On the maximum likelihood regularization of Fredholm convolution equations of the first kind," in Treatment of Integral Equations by Numerical Methods (C. T. H. Baker and G. F. Miller, eds.), Academic Press, New York, 1982, pp. 95105. MR 755345
 [10]
 B. Davies & B. Martin, "Numerical inversion of the Laplace transform: A survey and comparison of methods," J. Comput. Phys., v. 33, 1979, pp. 132. MR 549576 (80h:65106)
 [11]
 H. Dubner & J. Abate, "Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform," J. Assoc. Comput. Mach., v. 15, 1968, pp. 115123. MR 0235726 (38:4029)
 [12]
 A. Erdélyi, "Inversion formula for the Laplace transform," Philos. Mag., v. 34, 1943, pp. 533537.
 [13]
 W. Feller, An Introduction to Probability Theory and its Applications, Vol. 2, Wiley, New York, 1971. MR 0270403 (42:5292)
 [14]
 D. S. Gilliam, J. R. Schulenberger & J. R. Lund, "Spectral representation of the Laplace and Stieltjes transform," in Computational and Combinatorial Methods in Systems Theory (C. P. Byrne and A. Lindquist, eds.), Elsevier Science, NorthHolland, 1986, pp. 6974. MR 923997 (89b:47073)
 [15]
 R. R. Goldberg & R. S. Varga, "Moebius inversion of Fourier transforms," Duke Math. J., v. 23, 1956, pp. 553559. MR 0080800 (18:304b)
 [16]
 S. A. Gustafson & G. Dahlquist, "On the computation of slowly convergent Fourier integrals," in Methoden und Verfahren der Mathematischen Physik, no. 6, Bibliographisches Institut Ag Mannheim, Wien and Zürich, 1972, pp. 93112. MR 0359377 (50:11831)
 [17]
 P. Henrici, Applied Computational and Complex Analysis, Vol. 2, Wiley, New York, 1977. MR 0453984 (56:12235)
 [18]
 F. R. DeHoog, J. H. Knight & A. N. Stokes, "An improved method for numerical inversion of Laplace transforms," SIAM J. Sci. Statist. Comput., v. 3, 1982, pp. 357366. MR 667833 (84h:65113)
 [19]
 Y. Ikebe, "Galerkin method for the numerical solution of Fredholm integral equations of the second kind," SIAM Rev., v. 14, 1972, pp. 465491. MR 0307515 (46:6635)
 [20]
 R. E. Jones, Solving Linear Algebraic Systems Arising in the Solution of Integral Equations of the First Kind, Ph.D. Dissertation, University of New Mexico, 1985.
 [21]
 I. M. Longman, "Note on a method for computing infinite integrals of oscillatory functions," Proc. Cambridge Philos. Soc., v. 52, 1956, pp. 764768. MR 0082193 (18:515f)
 [22]
 Y. L. Luke, "On the computation of oscillatory integrals," Proc. Cambridge Philos. Soc., v. 50, 1954, pp. 269277. MR 0062518 (15:992b)
 [23]
 J. Ross MacDonald, "Accelerated convergence, divergence, iteration, extrapolation, and curve fitting," J. Appl. Phys., v. 35, 1964, pp. 30343041.
 [24]
 M. J. Marsden & G. D. Taylor, "Numerical evaluation of Fourier integrals," in Numerische Methoden der Approximations theorie, Band 1 (L. Collatz and G. Meinardus, eds.), ISNM 16, BirkhäuserVerlag, Basel, 1972, pp. 6176. MR 0386234 (52:7092)
 [25]
 J. T. Marti, "On a regularization method for Fredholm equations of the first kind using Sobolev spaces," in Treatment of Integral Equations by Numerical Methods (C. T. H. Baker and G. F. Miller, eds.), Academic Press, New York, 1982, pp. 5966. MR 755342
 [26]
 P. Demottoni & G. Talenti, "Stabilization and error bounds for the inverse Laplace transform," Numer. Funct. Anal. Optim., v. 3, 1981, pp. 265283. MR 629946 (82h:65093)
 [27]
 M. Z. Nashed & G. Wahba, "Some exponentially decreasing error bounds for a numerical inversion of the Laplace transform," J. Math. Anal. Appl., v. 52, 1975, pp. 660668. MR 0431668 (55:4663)
 [28]
 National Bureau of Standards, Handbook of Mathematical Functions, vol. 55, Applied Math. Series, Pitman, Boston, 1964.
 [29]
 A. Papoulis, "A new method of inversion of the Laplace transform," Quart. Appl. Math., v. 14, 1956, pp. 405414. MR 0082734 (18:602e)
 [30]
 R. Piessens, "Numerical inversion of the Laplace transform," IEEE Trans. Automat. Control, v. AC14, 1969, pp. 299301. MR 0245178 (39:6490)
 [31]
 E. L. Post, "Generalized differentiation," Trans. Amer. Math. Soc., v. 32, 1930, pp. 723781. MR 1501560
 [32]
 F. Riesz & B. SzNagy, Functional Analysis, Ungar, New York, 1955. MR 0071727 (17:175i)
 [33]
 H. E. Salzer, "Tables for the numerical calculation of inverse Laplace transforms," J. Math. Phys., v. 37, 1958, pp. 89109. MR 0102907 (21:1692)
 [34]
 H. E. Salzer, "Additional formulas and tables for orthogonal polynomials originating from inversion integrals," J. Math. Phys., v. 40, 1961, pp. 7286. MR 0129576 (23:B2612)
 [35]
 R. A. Schapery, Approximate Methods of Transform Inversion for Viscoelastic Stress Analysis, Proc. 4th U.S. Nat. Congr. Appl. Mech. ASME, no. 2, 1962, pp. 10751085. MR 0153175 (27:3144)
 [36]
 C. J. Shirtliffe & D. G. Stephenson, "A computer oriented adaption of Salzer's method for inverting Laplace transforms," J. Math. Phys., v. 40, 1961, pp. 135141. MR 0150949 (27:935)
 [37]
 K. Singhal & J. Vlach, "Computation of time domain response by numerical inversion of the Laplace transform," J. Franklin Inst., v. 299, 1975, pp. 109126. MR 0375744 (51:11934)
 [38]
 M. Silverberg, "Improving the efficiency of Laplace transform inversion for network analysis," Electron. Lett., v. 6, 1970, pp. 105106.
 [39]
 F. Stenger, "Numerical methods based on the Whittaker cardinal, or Sinc functions," SIAM Rev., v. 23, 1981, pp. 165224. MR 618638 (83g:65027)
 [40]
 F. Stenger, "Explicit, nearly optimal, linear rational approximation with preassigned poles," Math. Comp., v. 47, 1986, pp. 225252. MR 842132 (87g:41034)
 [41]
 A. N. Tikhonov & V. Y. Arsenin, Solution of IllPosed Problems, Winston, Washington, 1977. MR 0455365 (56:13604)
 [42]
 M. Trummer, "A method of solving illposed linear operator equations," SIAM J. Numer. Anal., v. 21, 1984, pp. 729737. MR 749367 (85m:65051)
 [43]
 D. V. Widder, The Laplace Transform, Princeton Univ. Press, Princeton, N.J., 1936.
 [44]
 V. Zakian, "Numerical inversion of Laplace transform," Electron. Lett., v. 5, 1969, pp. 120121.
 [45]
 V. Zakian, "Optimization of numerical inversion of Laplace transform," Electron. Lett., v. 6, 1970, pp. 677679.
 [46]
 V. Zakian & D. R. Gannon, "Least squares optimization of numerical inversion of Laplace transform," Electron. Lett., v. 7, 1971, pp. 7071. MR 0319370 (47:7914)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65R10,
44A10
Retrieve articles in all journals
with MSC:
65R10,
44A10
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198909835587
PII:
S 00255718(1989)09835587
Keywords:
Laplace transform,
inversion
Article copyright:
© Copyright 1989
American Mathematical Society
