Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Quadrature formulae and functions of exponential type


Authors: Qazi I. Rahman and Gerhard Schmeisser
Journal: Math. Comp. 54 (1990), 245-270
MSC: Primary 65D32
DOI: https://doi.org/10.1090/S0025-5718-1990-0990602-8
MathSciNet review: 990602
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we obtain certain generalizations of the trapezoidal rule and the Euler-Maclaurin formula that involve derivatives. In the case of quadrature of functions of exponential type over infinite intervals we find conditions under which existence of the (improper) integral and convergence of the approximating series become equivalent. In the process, we also establish a best possible version of a theorem of R. P. Boas and A. C. Schaeffer.


References [Enhancements On Off] (What's this?)

  • [1] R. P. Boas, Jr, Entire functions, Academic Press, New York, 1954. MR 0068627 (16:914f)
  • [2] R. P. Boas, Jr. and A. C. Schaeffer, New inequalities for entire functions, J. Math. Mech. 7 (1958), 191-201. MR 0092856 (19:1170a)
  • [3] R. Brück, Identitätssätze für ganze Funktionen vom Exponentialtyp, Mitteilungen Math. Seminar Giessen, Heft 168, 1984.
  • [4] J. D. Donaldson and D. Elliott, A unified approach to quadrature rules with asymptotic estimates of their remainders, SIAM J. Numer. Anal. 9 (1972), 573-602. MR 0317522 (47:6069)
  • [5] R. Gervais, Q. I. Rahman and G. Schmeisser, A bandlimited function simulating a durationlimited one, in Anniversary Volume on Approximation Theory and Functional Analysis (P. L. Butzer, R. L. Stens, B. Sz.-Nagy, eds.), ISNM vol. 65, Birkhäuser, Basel, 1984, pp. 355-362. MR 820536 (87i:41002)
  • [6] G. H. Hardy, Divergent series, Oxford Univ. Press, Oxford, 1949. MR 0030620 (11:25a)
  • [7] P. Henrici, Applied and computational complex analysis, vol. 1, Wiley, New York, 1974. MR 0372162 (51:8378)
  • [8] R. Kress, On the general Hermite cardinal interpolation, Math. Comp. 26 (1972), 925-933. MR 0320586 (47:9122)
  • [9] E. Lindelöf, Le calcul des résidus, Chelsea, New York, 1947.
  • [10] J. McNamee, Error-bounds for the evaluation of integrals by the Euler-Maclaurin formula and by Gauss-type formulae, Math. Comp. 18 (1964), 368-381. MR 0185804 (32:3264)
  • [11] P. Olivier and Q. I. Rahman, Sur une formule de quadrature pour des fonctions entières, RAIRO Modél. Math. Anal. Numér. 20 (1986), 517-537. MR 862790 (88c:65028)
  • [12] G. Schmeisser and H. Schirmeier, Praktische Mathematik, de Gruyter, Berlin, 1976.
  • [13] F. Stenger, Integration formulae based on the trapezoidal formula, J. Inst. Math. Appl. 12 (1973), 103-114. MR 0381261 (52:2158)
  • [14] -, Numerical methods based on Whittaker cardinal or sinc functions, SIAM Rev. 23 (1981), 165-224. MR 618638 (83g:65027)
  • [15] H. Takahasi and M. Mori, Estimation of errors in the numerical quadrature of analytic functions, Applicable Anal. 1 (1971), 201-229. MR 0288960 (44:6155)
  • [16] E. C. Titchmarsh, The theory of functions, 2nd ed., Oxford Univ. Press, Oxford, 1939.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D32

Retrieve articles in all journals with MSC: 65D32


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1990-0990602-8
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society