adic computation of real quadratic class numbers
Authors:
J. Buchmann, J. W. Sands and H. C. Williams
Journal:
Math. Comp. 54 (1990), 855868
MSC:
Primary 11Y40; Secondary 11R29
MathSciNet review:
1010596
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be any real quadratic field and let be the class number of . A method utilizing the padic class number formula for is described for evaluating . The technique was programmed for a micro VAX II computer and run on all fields with radicand .
 [1]
Yvette
Amice and Jean
Fresnel, Fonctions zêta 𝑝adiques des corps de
nombres abeliens réels, Acta Arith. 20 (1972),
353–384 (French). MR 0337898
(49 #2667)
 [2]
J. W. L. Glaisher, Residue of the product of p numbers in arithmetical progression mod and , Messenger Math. 30 (190001), 7192.
 [3]
Heinrich
Wolfgang Leopoldt, Eine 𝑝adische Theorie der Zetawerte. II
Die 𝑝adische ΓTransformation, J. Reine Angew. Math.
274/275 (1975), 224–239 (German). Collection of
articles dedicated to Helmut Hasse on his seventyfifth birthday, III. MR 0379446
(52 #351)
 [4]
R.
A. Mollin and H.
C. Williams, Computation of the class number of a real quadratic
field, Utilitas Math. 41 (1992), 259–308. MR 1162532
(93d:11134)
 [5]
I. S. Slavutskii, Upper bounds and numerical calculation of the number of ideal classes of real quadratic fields, Amer. Math. Soc. Transl. (2) 82 (1969), 6772.
 [6]
R.
G. Stanton, C.
Sudler Jr., and H.
C. Williams, An upper bound for the period of the simple continued
fraction for √𝐷, Pacific J. Math. 67
(1976), no. 2, 525–536. MR 0429724
(55 #2735)
 [7]
A.
J. Stephens and H.
C. Williams, Some computational results on a
problem concerning powerful numbers, Math.
Comp. 50 (1988), no. 182, 619–632. MR 929558
(89d:11091), http://dx.doi.org/10.1090/S00255718198809295583
 [8]
H. Wada, A table of ideal class numbers of real quadratic fields, Kôkyûroku in Math., no. 10, Sophia University, Tokyo, 1981.
 [9]
Lawrence
C. Washington, Introduction to cyclotomic fields, Graduate
Texts in Mathematics, vol. 83, SpringerVerlag, New York, 1982. MR 718674
(85g:11001)
 [1]
 Y. Amice and J. Fresnel, Fonctions zêta padiques des corps de nombres abeliens réels, Acta Arith. 20 (1972), 353384. MR 0337898 (49:2667)
 [2]
 J. W. L. Glaisher, Residue of the product of p numbers in arithmetical progression mod and , Messenger Math. 30 (190001), 7192.
 [3]
 H. W. Leopoldt, Eine padische Theorie der Zetawerte. II, Die padische TTransformation, J. Reine Angew. Math. 274/275 (1975), 224239. MR 0379446 (52:351)
 [4]
 R. A. Mollin and H. C. Williams, Computation of the class number of a real quadratic field, Advances in the Theory of Computation and Computational Mathematics (to appear). MR 1162532 (93d:11134)
 [5]
 I. S. Slavutskii, Upper bounds and numerical calculation of the number of ideal classes of real quadratic fields, Amer. Math. Soc. Transl. (2) 82 (1969), 6772.
 [6]
 R. G. Stanton, C. Sudler, Jr., and H. C. Williams, An upper bound for the period of the simple continued fraction for , Pacific J. Math. 67 (1976), 525536. MR 0429724 (55:2735)
 [7]
 A. J. Stephens and H. C. Williams, Some computational results on a problem concerning powerful numbers, Math. Comp. 50 (1988), 619632. MR 929558 (89d:11091)
 [8]
 H. Wada, A table of ideal class numbers of real quadratic fields, Kôkyûroku in Math., no. 10, Sophia University, Tokyo, 1981.
 [9]
 L. C. Washington, Introduction to cyclotomic fields, SpringerVerlag, New York, 1982. MR 718674 (85g:11001)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
11Y40,
11R29
Retrieve articles in all journals
with MSC:
11Y40,
11R29
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718199010105969
PII:
S 00255718(1990)10105969
Article copyright:
© Copyright 1990 American Mathematical Society
