On the computation of a table of complex cubic fields with discriminant

Authors:
Gilbert W. Fung and H. C. Williams

Journal:
Math. Comp. **55** (1990), 313-325

MSC:
Primary 11R16; Secondary 11Y40

Erratum:
Math. Comp. **63** (1994), 433.

Erratum:
Math. Comp. **63** (1994), 433.

MathSciNet review:
1023760

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A method for finding all the nonisomorphic complex cubic fields with discriminant is described. Three different methods were used to find the class number of each of these fields. The speed of these techniques is discussed and several tables illustrating the computational results are presented. These include tables of the distribution of the fields and the class numbers and the class group structures of these fields.

**[1]**I. O. Angell,*A table of complex cubic fields*, Bull. London Math. Soc.**5**(1973), 37–38. MR**0318099****[2]**Pierre Barrucand, John Loxton, and H. C. Williams,*Some explicit upper bounds on the class number and regulator of a cubic field with negative discriminant*, Pacific J. Math.**128**(1987), no. 2, 209–222. MR**888515****[3]**Pierre Barrucand, H. C. Williams, and L. Baniuk,*A computational technique for determining the class number of a pure cubic field*, Math. Comp.**30**(1976), no. 134, 312–323. MR**0392913**, 10.1090/S0025-5718-1976-0392913-9**[4]**Johannes Buchmann and H. C. Williams,*On the computation of the class number of an algebraic number field*, Math. Comp.**53**(1989), no. 188, 679–688. MR**979937**, 10.1090/S0025-5718-1989-0979937-4**[5]**H. Cohen and J. Martinet,*Class groups of number fields: numerical heuristics*, Math. Comp.**48**(1987), no. 177, 123–137. MR**866103**, 10.1090/S0025-5718-1987-0866103-4**[6]**H. Davenport and H. Heilbronn,*On the density of discriminants of cubic fields. II*, Proc. Roy. Soc. London Ser. A**322**(1971), no. 1551, 405–420. MR**0491593****[7]**B. N. Delone and D. K. Faddeev,*The theory of irrationalities of the third degree*, Translations of Mathematical Monographs, Vol. 10, American Mathematical Society, Providence, R.I., 1964. MR**0160744****[8]**Veikko Ennola and Reino Turunen,*On totally real cubic fields*, Math. Comp.**44**(1985), no. 170, 495–518. MR**777281**, 10.1090/S0025-5718-1985-0777281-8**[9]**Pascual Llorente and Enric Nart,*Effective determination of the decomposition of the rational primes in a cubic field*, Proc. Amer. Math. Soc.**87**(1983), no. 4, 579–585. MR**687621**, 10.1090/S0002-9939-1983-0687621-6**[10]**Pascual Llorente and Jordi Quer,*On totally real cubic fields with discriminant 𝐷<10⁷*, Math. Comp.**50**(1988), no. 182, 581–594. MR**929555**, 10.1090/S0025-5718-1988-0929555-8**[11]**Daniel Shanks,*A survey of quadratic, cubic and quartic algebraic number fields (from a computational point of view)*, Proceedings of the Seventh Southeastern Conference on Combinatorics, Graph Theory, and Computing (Louisiana State Univ., Baton Rouge, La., 1976), Utilitas Math., Winnipeg, Man., 1976, pp. 15–40. Congressus Numerantium, No. XVII. MR**0453691****[12]**-, Review of [1], Math. Comp.**29**(1975), 661-665.**[13]**Hugh C. Williams,*Continued fractions and number-theoretic computations*, Rocky Mountain J. Math.**15**(1985), no. 2, 621–655. Number theory (Winnipeg, Man., 1983). MR**823273**, 10.1216/RMJ-1985-15-2-621**[14]**H. C. Williams,*Effective primality tests for some integers of the forms 𝐴5ⁿ-1 and 𝐴7ⁿ-1*, Math. Comp.**48**(1987), no. 177, 385–403. MR**866123**, 10.1090/S0025-5718-1987-0866123-X**[15]**H. C. Williams, G. Cormack, and E. Seah,*Calculation of the regulator of a pure cubic field*, Math. Comp.**34**(1980), no. 150, 567–611. MR**559205**, 10.1090/S0025-5718-1980-0559205-7**[16]**H. C. Williams and C. R. Zarnke,*Some algorithms for solving a cubic congruence modulo 𝑝*, Utilitas Math.**6**(1974), 285–306. MR**0389730**

Retrieve articles in *Mathematics of Computation*
with MSC:
11R16,
11Y40

Retrieve articles in all journals with MSC: 11R16, 11Y40

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1990-1023760-X

Article copyright:
© Copyright 1990
American Mathematical Society