Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A note on Perrin pseudoprimes


Author: Steven Arno
Journal: Math. Comp. 56 (1991), 371-376
MSC: Primary 11A41; Secondary 11Y16
DOI: https://doi.org/10.1090/S0025-5718-1991-1052083-9
MathSciNet review: 1052083
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The cubic recurrence $ A(n + 3) = A(n) + A(n + 1)$ with initial conditions $ A(0) = 3$, $ A(1) = 0$, $ A(2) = 2$, known as Perrin's sequence, is associated with several types of pseudoprimes. In this paper we will explore a question of Adams and Shanks concerning the existence of the so-called Q and I Perrin pseudoprimes, and develop an algorithm to search for all such pseudoprimes below some specified limit. As an example, we show that none exist below $ {10^{14}}$.


References [Enhancements On Off] (What's this?)

  • [1] W. Adams and D. Shanks, Strong primality tests that are not sufficient, Math. Comp. 35 (1982), 225-300. MR 658231 (84c:10007)
  • [2] W. Adams, Characterizing pseudoprimes for third-order linear recurrences, Math. Comp. 48 (1987), 1-15. MR 866094 (87k:11014)
  • [3] S. Lang, Algebra, Addison-Wesley, 1971. MR 0197234 (33:5416)
  • [4] E. Lucas, Sur la recherche de grands nombres premiers, A. F. Congrès du Clermont-Ferrand, 1876, pp. 61-68.
  • [5] R. Perrin, Item 1484, L'Intermédiaire des Math. 6 (1899), 76-77.
  • [6] D. Shanks, G. C. Kurtz, and A. C. Williams, Fast primality test for numbers less than $ 50 \times {10^9}$, Math. Comp. 46 (1986), 691-701. MR 829639 (87d:11101)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11A41, 11Y16

Retrieve articles in all journals with MSC: 11A41, 11Y16


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1991-1052083-9
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society