A Galerkin method for the forward-backward heat equation
Authors:
A. K. Aziz and J.-L. Liu
Journal:
Math. Comp. 56 (1991), 35-44
MSC:
Primary 65M60
DOI:
https://doi.org/10.1090/S0025-5718-1991-1052085-2
MathSciNet review:
1052085
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper a new variational method is proposed for the numerical approximation of the solution of the forward-backward heat equation. The approach consists of first reducing the second-order problem to an equivalent first-order system, and then using a finite element procedure with continuous elements in both space and time for the numerical approximation. Under suitable regularity assumptions, error estimates and the results of some numerical experiments are presented.
- [1] A. K. Aziz and P. Monk, Continuous finite elements in space and time for the heat equation, Math. Comp. 52 (1989), 255-274. MR 983310 (90d:65189)
- [2] A. K. Aziz, S. Leventhal, and A. Werschulz, Higher-order convergence for a finite element method for the Tricomi problem, Numer. Funct. Anal. Optim. 2 (1980), 65-78. MR 580383 (82c:65065)
- [3] M. S. Baouendi and P. Grisvard, Sur une équation d'évolution changeant de type, J. Funct. Anal. 2 (1968), 352-367. MR 0252817 (40:6034)
- [4] K. O. Friedrichs, Symmetric positive differential equations, Comm. Pure Appl. Math. 11 (1958), 333-418. MR 0100718 (20:7147)
- [5] M. Gevrey, Sur les équations aux dérivées partielles du type parabolique, J. Math. Pures Appl. (6) 9 (1913), 305-475.
- [6] -, Sur les équations aux dérivées partielles du type parabolique (suite), J. Math. Pures Appl. (6) 10 (1914), 105-148.
- [7] J. A. Goldstein and T. Mazumdar, A heat equation in which the diffusion coefficient changes sign, J. Math. Anal. Appl. 103 (1984), 533-564. MR 762573 (86g:35091)
- [8] T. LaRosa, The propagation of an electron beam through the solar corona, Ph.D. Dissertation, Department of Physics and Astronomy, University of Maryland, 1986.
- [9] P. Lesaint and P. A. Raviart, Finite element collocation methods for first order systems, Math. Comp. 33 (1979), 891-918. MR 528046 (80d:65118)
- [10] J. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod Gauthier-Villars, Paris, 1969.
- [11] K. Stewartson, Multistructural boundary layers on flat plates and related bodies, Adv. in Appl. Mech. 14 (1974), 145-239.
- [12] -, D'Alembert's paradox, SIAM Rev. 23 (1981), 308-343. MR 631832 (82k:76001)
- [13] V. Thomée, Galerkin finite element methods for parabolic problems, Lecture Notes in Math., vol. 1054, Springer-Verlag, 1972.
- [14] V. Vanaja, Iterative solutions of backward-forward heat equation, Ph.D. Dissertation, Department of Mathematics, University of Maryland, 1988.
Retrieve articles in Mathematics of Computation with MSC: 65M60
Retrieve articles in all journals with MSC: 65M60
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1991-1052085-2
Keywords:
Finite element,
first-order system,
error estimates
Article copyright:
© Copyright 1991
American Mathematical Society