Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Multigrid analysis of finite element methods with numerical integration


Author: Charles I. Goldstein
Journal: Math. Comp. 56 (1991), 409-436
MSC: Primary 65N55; Secondary 65F10, 65N30
DOI: https://doi.org/10.1090/S0025-5718-1991-1066832-7
MathSciNet review: 1066832
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We analyze multigrid convergence rates when elliptic boundary value problems are discretized using finite element methods with numerical integration. The resulting discrete problem does not fall into the standard variational framework for analyzing multigrid methods since the bilinear forms on different grid levels are not suitably related to each other. We first discuss extensions of the standard variational multigrid theory and then apply these results to the case of numerical quadrature. In particular, it is shown that the $ \mathcal{V}$-cycle algorithm has a convergence rate independent of grid size under suitable conditions.


References [Enhancements On Off] (What's this?)

  • [1] A. Brandt, Multi-level adaptive solution to boundary value problems, Math. Comp. 31 (1977), 333-391. MR 0431719 (55:4714)
  • [2] W. Hackbusch, Multigrid methods and applications, Springer-Verlag, New York, 1985. MR 814495 (87e:65082)
  • [3] J. Mandel, S. McCormick, and R. Bank, Variational multigrid theory, Multigrid Methods (S. McCormick, ed.), SIAM, Philadelphia, 1986, pp. 131-178. MR 972757
  • [4] C. I. Goldstein, Analysis and applications of multigrid preconditioners for singularly perturbed boundary value problems, SIAM J. Numer. Anal. 26 (1989), 1090-1123. MR 1014876 (90i:65197)
  • [5] N. H. Decker, The Fourier analysis of a multigrid preconditioner, Multigrid Methods, Proc. Third Copper Mountain Conference (S. McCormick, ed.), Marcel Dekker, New York, 1988, pp. 117-141. MR 959340 (89i:65106)
  • [6] D. Braess and W. Hackbusch, A new convergence proof for the multigrid method including the $ \mathcal{V}$-cycle, SIAM J. Numer. Anal. 20 (1983), 967-975. MR 714691 (85h:65233)
  • [7] R. E. Bank and T. Dupont, An optimal order process for solving finite element equations, Math. Comp. 36 (1981), 35-51. MR 595040 (82b:65113)
  • [8] R. E. Bank and C. Douglas, Sharp estimates for multigrid rates of convergence with general smoothing and acceleration, SIAM J. Numer. Anal. 22 (1985), 617-633. MR 795944 (86j:65037)
  • [9] J. H. Bramble and J. E. Pasciak, New convergence estimates for multigrid algorithms, Math. Comp. 49 (1987), 311-330. MR 906174 (89b:65234)
  • [10] C. Douglas, Multigrid algorithms with applications to elliptic boundary value problems, SIAM J. Numer. Anal. 21 (1984), 236-254. MR 736328 (85i:65132)
  • [11] S. McCormick, Multigrid methods for variational problems: General theory for the $ \mathcal{V}$ cycle, SIAM J. Numer. Anal. 22 (1985), 634-643. MR 795945 (86m:65030)
  • [12] N. H. Decker, J. Mandel, and S. V. Parter, On the role of regularity in multigrid methods, Multigrid Methods, Proc. Third Copper Mountain Conference (S. McCormick, ed.), Marcel Dekker, New York, 1988, pp. 143-156. MR 959341 (90h:65167)
  • [13] P. G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
  • [14] G. Strang and G. J. Fix, An analysis of the finite element method, Prentice-Hall, Englewood Cliffs, N.J., 1973. MR 0443377 (56:1747)
  • [15] C. I. Goldstein, Variational crimes and error estimates in the finite element method, Math. Comp. 15 (1980), 1131-1157. MR 583491 (81m:65169)
  • [16] J. H. Bramble, J. E. Pasciak, and J. Xu, The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms, Math. Comp. 56 (1991), 1-34. MR 1052086 (91h:65159)
  • [17] S. C. Brenner, An optimal-order multigrid method for P1 nonconforming finite elements, Math. Comp. 52 (1989), 1-15. MR 946598 (89f:65119)
  • [18] H. C. Elman, Iterative methods for large, sparse, nonsymmetric systems of linear equations, Ph.D. Thesis, Yale Univ. Computer Science Dept., Report 229, 1981.
  • [19] J. L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, Vol. I, Springer-Verlag, New York, 1972. MR 0350177 (50:2670)
  • [20] R. Scott, Interpolated boundary conditions in the finite element method, SIAM J. Numer. Anal. 12 (1975), 404-427. MR 0386304 (52:7162)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N55, 65F10, 65N30

Retrieve articles in all journals with MSC: 65N55, 65F10, 65N30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1991-1066832-7
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society