The CFL condition for spectral approximations to hyperbolic initial-boundary value problems

Authors:
David Gottlieb and Eitan Tadmor

Journal:
Math. Comp. **56** (1991), 565-588

MSC:
Primary 65N12; Secondary 65N35

DOI:
https://doi.org/10.1090/S0025-5718-1991-1066833-9

MathSciNet review:
1066833

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the stability of spectral approximations to scalar hyperbolic initial-boundary value problems with variable coefficients. Time is discretized by explicit multi-level or Runge-Kutta methods of order (forward Euler time-differencing is included), and we study spatial discretizations by spectral and pseudospectral approximations associated with the general family of Jacobi polynomials. We prove that these fully explicit spectral approximations are stable provided their time step, , is restricted by the CFL-like condition , where *N* equals the spatial number of degrees of freedom. We give two independent proofs of this result, depending on two different choices of appropriate -weighted norms. In both approaches, the proofs hinge on a certain inverse inequality interesting for its own sake. Our result confirms the commonly held belief that the above CFL stability restriction, which is extensively used in practical implementations, guarantees the stability (and hence the convergence) of fully-explicit spectral approximations in the nonperiodic case.

**[1]**M. Abramowitz and I. A. Stegun,*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, Government Printing Office, Washington, D.C., 1972. MR**0167642 (29:4914)****[2]**C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. Zang,*Spectral methods influid dynamics*, Springer-Verlag, New York, 1988. MR**2340254 (2009d:76084)****[3]**C. Canuto and A. Quarteroni,*Approximation results for orthogonal polynomials in Sobolev spaces*, Math. Comp.**38**(1982), 67-86. MR**637287 (82m:41003)****[4]**P. J. Davis and P. Rabinowitz,*Methods of numerical integration*, 2nd ed., Academic Press, New York, 1984. MR**760629 (86d:65004)****[5]**D. Gottlieb,*The stability of pseudospectral Chebyshev methods*, Math. Comp.**36**(1981), 107-118. MR**595045 (82b:65123)****[6]**D. Gottlieb, L. Lustman, and E. Tadmor,*Stability analysis of spectral methods for hyperbolic initial-boundary value systems*, SIAM J. Numer. Anal.**24**(1987), 241-256. MR**881363 (88d:65127)****[7]**D. Gottlieb, L. Lustman, and E. Tadmor,*Convergence of spectral methods for hyperbolic initial-boundary value systems*, SIAM J. Numer. Anal.**24**(1987), 532-537. MR**888749 (89i:65089)****[8]**D. Gottlieb and S. Orszag,*Numerical analysis of spectral methods*:*Theory and applications*, SIAM, Philadelphia, PA, 1977. MR**0520152 (58:24983)****[9]**B. Gustafsson, H. O. Kreiss, and A. Sundström,*Stability theory of difference approximations for mixed initial boundary value problems*. II, Math. Comp.**26**(1972), 649-688. MR**0341888 (49:6634)****[10]**C. W. Shu,*Total-variation-diminishing time discretizations*, SIAM J. Sci. Statist. Comput.**6**(1988), 1073-1084. MR**963855 (90a:65196)****[11]**C. W. Shu and S. Osher,*Efficient implementation of essentially non-oscillatory shock-capturing schemes*, J. Comput. Phys.**77**(1988), 439-471. MR**954915 (89g:65113)****[12]**A. H. Stroud and D. Secrest,*Gaussian quadrature formulas*, Prentice-Hall, Englewood Cliffs, N. J., 1966. MR**0202312 (34:2185)****[13]**G. Szegö,*Orthogonal polynomials*, 4th ed., Amer. Math. Soc., Providence, R. I., 1975.

Retrieve articles in *Mathematics of Computation*
with MSC:
65N12,
65N35

Retrieve articles in all journals with MSC: 65N12, 65N35

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1991-1066833-9

Article copyright:
© Copyright 1991
American Mathematical Society