Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Reviews and Descriptions of Tables and Books


Journal: Math. Comp. 56 (1991), 875-886
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] Richard E. Blahut, Fast algorithms for digital signal processing, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1985. MR 777867
  • [2] James H. McClellan and Thomas W. Parks, Eigenvalue and eigenvector decomposition of the discrete Fourier transform, IEEE Trans. Audio Electroacoust. AU-20 (1972), no. 1, 66–74. MR 0399751
  • [3] Henri J. Nussbaumer, Fast Fourier transform and convolution algorithms, Springer Series in Information Sciences, vol. 2, Springer-Verlag, Berlin-New York, 1981. MR 606376
  • [4] I. Schur, Über die Gaußschen Summen, Göttinger Nachr. 1921, 147-153.
  • [1] Harold J. Kushner, A versatile stochastic model of a function of unknown and time varying form, J. Math. Anal. Appl. 5 (1962), 150–167. MR 0141213
  • [1] American National Standard Programming Language FORTRAN, ANSI X3., 9-1978, American National Standards Institute, 1430 Broadway, New York, NY 10018.
  • [2] D. E. Amos, S. L. Daniel, and M. K. Weston, CDC 6600 subroutines IBESS and JBESS for Bessel functions 𝐼_{𝜈}(𝑥) and 𝐽_{𝜈}(𝑥), 𝑥≥0, 𝜈≥0, ACM Trans. Math. Software 3 (1977), no. 1, 76–92. MR 0433810
  • [3] W. J. Cody, Software for special functions, Rend. Sem. Mat. Univ. Politec. Torino, Special issue: Special functions: theory and computation (1985), 91-116.
  • [4] IMSL Library Reference Manual, IMSL, 7500 Bellaire Boulevard, Houston, TX 77036-5085, Edition 9, June 1982.
  • [5] NAG Fortran Mini Manual--Mark 12, Numerical Algorithms Group, Inc., 1101 31st St., Suite 100, Downers Grove, IL 60515-1263. First edition, March 1987.
  • [6] National Bureau of Standards, Handbook of mathematical functions (M. Abramowitz and I. A. Stegun, eds.), Applied Mathematics Series No. 55, U.S. Government Printing Office, Washington, D.C., 1964.
  • [7] F. W. J. Olver, Asymptotics and special functions, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Computer Science and Applied Mathematics. MR 0435697
  • [8] N. M. Temme, The numerical computation of the confluent hypergeometric function 𝑈(𝑎,𝑏,𝑧), Numer. Math. 41 (1983), no. 1, 63–82. MR 696551, 10.1007/BF01396306


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-91-99751-6
Article copyright: © Copyright 1991 American Mathematical Society