The modular representations of the Tits simple group in the principal block
Author:
Holger W. Gollan
Journal:
Math. Comp. 57 (1991), 369386
MSC:
Primary 20C20; Secondary 20E32
MathSciNet review:
1079019
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper we show how to construct the 5modular absolutely irreducible representations of the Tits simple group in the principal block, which is the only block of positive defect. Starting with the smallest nontrivial ones, all the others except one pair are obtained as constituents of tensor products of dimension at most 729. The last two we get from a permutation representation of degree 1600. We give an exact description of the construction of the first one of degree 26 by extending its restrictions to several subgroups, a method first used in the existence proof of the Janko group . Using the explicit matrices obtained from the above constructions, we work out the Green correspondents and sources of all the representations and state their socle series.
 [1]
D. Benson, The simple group , Ph.D. Thesis, 1980.
 [2]
John
J. Cannon, An introduction to the group theory language,
Cayley, Computational group theory (Durham, 1982) Academic Press,
London, 1984, pp. 145–183. MR
760656
 [3]
J.
H. Conway, R.
T. Curtis, S.
P. Norton, R.
A. Parker, and R.
A. Wilson, Atlas of finite groups, Oxford University Press,
Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups;
With computational assistance from J. G. Thackray. MR 827219
(88g:20025)
 [4]
Gerhard
Hiss, The modular characters of the Tits simple group and its
automorphism group, Comm. Algebra 14 (1986),
no. 1, 125–154. MR 814141
(87c:20029), http://dx.doi.org/10.1080/00927878608823301
 [5]
P.
Landrock, Finite group algebras and their modules, London
Mathematical Society Lecture Note Series, vol. 84, Cambridge
University Press, Cambridge, 1983. MR 737910
(85h:20002)
 [6]
R.
A. Parker, The computer calculation of modular characters (the
meataxe), Computational group theory (Durham, 1982) Academic Press,
London, 1984, pp. 267–274. MR 760660
(85k:20041)
 [7]
R.
A. Parker and R.
A. Wilson, The computer construction of matrix representations of
finite groups over finite fields, J. Symbolic Comput.
9 (1990), no. 56, 583–590. Computational group
theory, Part 1. MR 1075424
(91j:20001), http://dx.doi.org/10.1016/S07477171(08)800752
 [8]
David
Parrott, A characterization of the Tits’ simple group,
Canad. J. Math. 24 (1972), 672–685. MR 0325757
(48 #4103)
 [9]
Gerhard
J. A. Schneider, Computing with endomorphism rings of modular
representations, J. Symbolic Comput. 9 (1990),
no. 56, 607–636. Computational group theory, Part 1. MR 1075427
(92a:20015), http://dx.doi.org/10.1016/S07477171(08)800788
 [10]
Robert
A. Wilson, The geometry and maximal subgroups of the simple groups
of A. Rudvalis and J. Tits, Proc. London Math. Soc. (3)
48 (1984), no. 3, 533–563. MR 735227
(86e:20035), http://dx.doi.org/10.1112/plms/s348.3.533
 [1]
 D. Benson, The simple group , Ph.D. Thesis, 1980.
 [2]
 J. J. Cannon, An introduction to the group theory language CAYLEY, Computational Group Theory (M. Atkinson, ed.), Academic Press, New York, 1984, pp. 145183. MR 760656
 [3]
 J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups, Oxford, 1985. MR 827219 (88g:20025)
 [4]
 G. Hiß, The modular characters of the Tits simple group and its automorphism group, Comm. Algebra 14 (1986), 125154. MR 814141 (87c:20029)
 [5]
 P. Landrock, Finite group algebras and their modules, London Math. Soc. Lecture Note Ser., vol. 84, Cambridge Univ. Press, 1983. MR 737910 (85h:20002)
 [6]
 R. A. Parker, The computer calculation of modular characters, The MeatAxe, Computational Group Theory (M. Atkinson, ed.), Academic Press, New York, 1984, pp. 267274. MR 760660 (85k:20041)
 [7]
 R. A. Parker and R. A. Wilson, The computer construction of matrix representations of finite groups over finite fields, preprint, 1989. MR 1075424 (91j:20001)
 [8]
 D. Parrott, A characterization of the Tits simple group, Canad. J. Math. 24 (1972), 672685. MR 0325757 (48:4103)
 [9]
 G. J. A. Schneider, Computing with endomorphism rings of modular representations, J. Symbolic Comput. 9 (1990), 607636. MR 1075427 (92a:20015)
 [10]
 R. A. Wilson, The geometry and maximal subgroups of the simple groups of A. Rudvalis and J. Tits, Proc. London Math. Soc. (3) 48 (1984), 533563. MR 735227 (86e:20035)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
20C20,
20E32
Retrieve articles in all journals
with MSC:
20C20,
20E32
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718199110790199
PII:
S 00255718(1991)10790199
Article copyright:
© Copyright 1991
American Mathematical Society
