Mixed finite element methods for compressible miscible displacement in porous media

Authors:
So-Hsiang Chou and Qian Li

Journal:
Math. Comp. **57** (1991), 507-527

MSC:
Primary 76M10; Secondary 65N30, 76N10, 76S05

DOI:
https://doi.org/10.1090/S0025-5718-1991-1094942-7

MathSciNet review:
1094942

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A differential system describing compressible miscible displacement in a porous medium is given. The concentration equation is treated by a Galerkin method and the pressure equation is treated by a parabolic mixed finite element method. Optimal-order estimates in and almost optimal-order estimates in are obtained for the errors in the approximate solutions under the condition that . This condition is much weaker than one given earlier by Douglas and Roberts for the same model. Furthermore, we obtain the -estimates for the time-derivatives of the concentration and the pressure, which were not given by the above authors. In addition, we also consider newer mixed spaces in two or three dimensions.

**[1]**F. Brezzi, J. Douglas, Jr., R. Durán, and M. Fortin,*Mixed finite elements for second order elliptic problems in three variables*, Numer. Math.**51**(1987), 237-250. MR**890035 (88f:65190)****[2]**F. Brezzi, J. Douglas, Jr., M. Fortin, and L. D. Marini,*Efficient rectangular mixed finite elements in two and three space variables*, RAIRO Modél. Math. Anal. Numér.**21**(1987), 581-604. MR**921828 (88j:65249)****[3]**F. Brezzi, J. Douglas, Jr., and L. D. Marini,*Two families of mixed finite elements of second order elliptic problems*, Numer. Math.**47**(1985), 217-235. MR**799685 (87g:65133)****[4]**Jim Douglas, Jr. and J. E. Roberts,*Numerical methods for a model for compressible miscible displacement in porous media*, Math. Comp.**41**(1983), 441-459. MR**717695 (85d:65053)****[5]**C. I. Goldstein and R. Scott,*Optimal*-*estimates for some Galerkin methods for the Dirichlet problem*, SIAM J. Numer. Anal. (to appear).**[6]**C. Johnson and V. Thomée,*Error estimates for some mixed finite element methods for parabolic type problems*, RAIRO Modél. Math. Anal. Numér.**15**(1981), 41-78. MR**610597 (83c:65239)****[7]**J. A. Nitsche, -*convergence of the finite element approximation*, Proc. Second Conf. on Finite Elements, Rennes, France, 1975. MR**568857 (81e:65058)****[8]**J. C. Nedelec,*Mixed finite elements in*, Numer. Math.**35**(1980), 315-341. MR**592160 (81k:65125)****[9]**-,*A new family of mixed finite elements in*, Numer. Math.**50**(1986), 57-82. MR**864305 (88e:65145)****[10]**P. A. Raviart and J. M. Thomas,*A mixed finite element method for*2-*nd order elliptic problems*, Mathematical Aspects of Finite Element Methods, Lecture Notes in Math., vol. 606, Springer-Verlag, 1977, pp. 292-315. MR**0483555 (58:3547)****[11]**A. H. Schatz, V. Thomée, and L. B. Wahlbin,*Maximum norm stability and error estimates in parabolic finite element equations*, Comm. Pure Appl. Math.**33**(1980), 265-304. MR**562737 (81g:65136)****[12]**R. Scott,*Optimal*-*estimates for the finite element method on irregular meshes*, Math. Comp.**30**(1976), 681-697. MR**0436617 (55:9560)****[13]**M. F. Wheeler,*A priori**error estimates for Galerkin approximations to parabolic differential equations*, SIAM J. Numer. Anal.**10**(1973), 723-749. MR**0351124 (50:3613)**

Retrieve articles in *Mathematics of Computation*
with MSC:
76M10,
65N30,
76N10,
76S05

Retrieve articles in all journals with MSC: 76M10, 65N30, 76N10, 76S05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1991-1094942-7

Article copyright:
© Copyright 1991
American Mathematical Society