On the distribution of a scaled condition number
Author:
Alan Edelman
Journal:
Math. Comp. 58 (1992), 185190
MSC:
Primary 15A52; Secondary 15A12, 62H10, 65F99, 65U05
MathSciNet review:
1106966
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this note, we give the exact distribution of a scaled condition number used by Demmel to model the probability that matrix inversion is difficult. Specifically, consider a random matrix A and the scaled condition number . Demmel provided bounds for the condition number distribution when A has real or complex normally distributed elements. Here, we give the exact formula.
 [1]
M. Abramowitz and I. A. Stegun, eds., Handbook of mathematical functions, Dover, New York, 1970.
 [2]
T.
W. Anderson, An introduction to multivariate statistical
analysis, Wiley Publications in Statistics, John Wiley & Sons,
Inc., New York; Chapman & Hall, Ltd., London, 1958. MR 0091588
(19,992a)
 [3]
A.
W. Davis, On the ratios of the individual latent roots to the trace
of a Wishart matrix, J. Multivariate Anal. 2 (1972),
440–443. MR 0324834
(48 #3183)
 [4]
James
W. Demmel, The probability that a numerical
analysis problem is difficult, Math. Comp.
50 (1988), no. 182, 449–480. MR 929546
(89g:65062), http://dx.doi.org/10.1090/S00255718198809295467
 [5]
Alan
Edelman, Eigenvalues and condition numbers of random matrices,
SIAM J. Matrix Anal. Appl. 9 (1988), no. 4,
543–560. MR
964668 (89j:15039), http://dx.doi.org/10.1137/0609045
 [6]
, Eigenvalues and condition numbers of random matrices, Ph.D. thesis, Dept. of Math., M.I.T., 1989.
 [7]
I. S. Gradshteyn and I. W. Ryzhik, Table of integrals, series, and products, 6th ed., Academic Press, New York, 1980.
 [8]
P.
R. Krishnaiah and F.
J. Schuurmann, On the evaluation of some distributions that arise
in simultaneous tests for the equality of the latent roots of the
covariance matrix, J. Multivariate Anal. 4 (1974),
265–282. MR 0359178
(50 #11633)
 [9]
F.
J. Schuurmann, P.
R. Krishnaiah, and A.
K. Chattopadhyay, On the distributions of the ratios of the extreme
roots to the trace of the the Wishart matrix, J. Multivariate Anal.
3 (1973), 445–453. MR 0331644
(48 #9976)
 [1]
 M. Abramowitz and I. A. Stegun, eds., Handbook of mathematical functions, Dover, New York, 1970.
 [2]
 T. W. Anderson, An introduction to multivariate statistical analysis, Wiley, New York, 1958. MR 0091588 (19:992a)
 [3]
 A. W. Davis, On the ratios of the individual latent roots to the trace of a Wishart matrix, J. Multivariate Anal. 2 (1972), 440443. MR 0324834 (48:3183)
 [4]
 J. W. Demmel, The probability that a numerical analysis problem is difficult, Math. Comp. 50 (1988), 449480. MR 929546 (89g:65062)
 [5]
 A. Edelman, Eigenvalues and condition numbers of random matrices, SIAM J. Matrix Anal. Appl. 9 (1988), 543560. MR 964668 (89j:15039)
 [6]
 , Eigenvalues and condition numbers of random matrices, Ph.D. thesis, Dept. of Math., M.I.T., 1989.
 [7]
 I. S. Gradshteyn and I. W. Ryzhik, Table of integrals, series, and products, 6th ed., Academic Press, New York, 1980.
 [8]
 P. R. Krishnaiah and F. J. Schuurmann, On the evaluation of some distributions that arise in simultaneous tests for the equality of the latent roots of the covariance matrix, J. Multivariate Anal. 4 (1974), 265282. MR 0359178 (50:11633)
 [9]
 F. J. Schuurmann, P. R. Krishnaiah, and A. K. Chattopadhyay, On the distributions of the ratios of the extreme roots to the trace of the Wishart matrix, J. Multivariate Anal. 3 (1973), 445453. MR 0331644 (48:9976)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
15A52,
15A12,
62H10,
65F99,
65U05
Retrieve articles in all journals
with MSC:
15A52,
15A12,
62H10,
65F99,
65U05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718199211069662
PII:
S 00255718(1992)11069662
Keywords:
Condition number,
illconditioning,
multivariate statistics,
numerical analysis,
random matrix
Article copyright:
© Copyright 1992
American Mathematical Society
