Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On the distribution of a scaled condition number


Author: Alan Edelman
Journal: Math. Comp. 58 (1992), 185-190
MSC: Primary 15A52; Secondary 15A12, 62H10, 65F99, 65U05
DOI: https://doi.org/10.1090/S0025-5718-1992-1106966-2
MathSciNet review: 1106966
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note, we give the exact distribution of a scaled condition number used by Demmel to model the probability that matrix inversion is difficult. Specifically, consider a random matrix A and the scaled condition number $ {\kappa _D}(A) = {\left\Vert A \right\Vert _F} \bullet \left\Vert {{A^{ - 1}}} \right\Vert$. Demmel provided bounds for the condition number distribution when A has real or complex normally distributed elements. Here, we give the exact formula.


References [Enhancements On Off] (What's this?)

  • [1] M. Abramowitz and I. A. Stegun, eds., Handbook of mathematical functions, Dover, New York, 1970.
  • [2] T. W. Anderson, An introduction to multivariate statistical analysis, Wiley, New York, 1958. MR 0091588 (19:992a)
  • [3] A. W. Davis, On the ratios of the individual latent roots to the trace of a Wishart matrix, J. Multivariate Anal. 2 (1972), 440-443. MR 0324834 (48:3183)
  • [4] J. W. Demmel, The probability that a numerical analysis problem is difficult, Math. Comp. 50 (1988), 449-480. MR 929546 (89g:65062)
  • [5] A. Edelman, Eigenvalues and condition numbers of random matrices, SIAM J. Matrix Anal. Appl. 9 (1988), 543-560. MR 964668 (89j:15039)
  • [6] -, Eigenvalues and condition numbers of random matrices, Ph.D. thesis, Dept. of Math., M.I.T., 1989.
  • [7] I. S. Gradshteyn and I. W. Ryzhik, Table of integrals, series, and products, 6th ed., Academic Press, New York, 1980.
  • [8] P. R. Krishnaiah and F. J. Schuurmann, On the evaluation of some distributions that arise in simultaneous tests for the equality of the latent roots of the covariance matrix, J. Multivariate Anal. 4 (1974), 265-282. MR 0359178 (50:11633)
  • [9] F. J. Schuurmann, P. R. Krishnaiah, and A. K. Chattopadhyay, On the distributions of the ratios of the extreme roots to the trace of the Wishart matrix, J. Multivariate Anal. 3 (1973), 445-453. MR 0331644 (48:9976)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 15A52, 15A12, 62H10, 65F99, 65U05

Retrieve articles in all journals with MSC: 15A52, 15A12, 62H10, 65F99, 65U05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1992-1106966-2
Keywords: Condition number, ill-conditioning, multivariate statistics, numerical analysis, random matrix
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society