Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Unconditional convergence of some Crank-Nicolson LOD methods for initial-boundary value problems

Author: Willem Hundsdorfer
Journal: Math. Comp. 58 (1992), 35-53
MSC: Primary 65M12; Secondary 65M20
MathSciNet review: 1106972
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper convergence properties are discussed for some locally one-dimensional (LOD) splitting methods applied to linear parabolic initial-boundary value problems. We shall consider unconditional convergence, where both the stepsize in time and the meshwidth in space tend to zero, independently of each other.

References [Enhancements On Off] (What's this?)

  • [1] W. Auzinger, On error structures and extrapolation for stiff systems with applications in the method of lines, Computing 44 (1990), 331-356. MR 1063771 (91h:65117)
  • [2] P. Brenner, M. Crouzeix, and V. Thomée, Single step methods for inhomogeneous linear differential equations in Banach space, RAIRO Numer. Anal. 16 (1982), 5-26. MR 648742 (83d:65268)
  • [3] M. Fiedler, Special matrices and their applications in numerical mathematics, Martinus Nijhoff, Dordrecht, 1986. MR 1105955 (92b:15003)
  • [4] P. J. van der Houwen and J. G. Verwer, One-step splitting methods for semi-discrete parabolic equations, Computing 22 (1979), 291-309. MR 620058 (83e:65148)
  • [5] W. H. Hundsdorfer and B. I. Steininger, Convergence of linear multistep and one-leg methods for stiff nonlinear initial value problems, BIT 31 (1991), 124-143. MR 1097487 (91m:65194)
  • [6] W. H. Hundsdorfer and J. G. Verwer, Stability and convergence of the Peaceman-Rachford ADI method for initial-boundary value problems, Math. Comp. 53 (1989), 81-101. MR 969489 (90h:65195)
  • [7] P. Lancaster and M. Tismenetsky, The theory of matrices, 2nd ed., Academic Press, Orlando, FL, 1985. MR 792300 (87a:15001)
  • [8] R. J. LeVeque, Intermediate boundary conditions for LOD, ADI and approximate-factorization methods, ICASE report 85-21, NASA Langley Research Centre, Hampton, VA, 1985.
  • [9] G. I. Marchuk, Methods of numerical mathematics, 2nd ed., Springer-Verlag, New York, 1981. MR 661258 (83e:65004)
  • [10] -, Splitting and alternating direction methods, Handbook of Numerical Analysis, vol. 1 (P. G. Ciarlet and J. L. Lions, eds.), North-Holland, Amsterdam, 1990, pp. 197-462. MR 1039325
  • [11] A. A. Samarskii, On an economical difference method for the solution of a multidimensional parabolic equation in an arbitrary region, Zh. Vychisl. Mat. i Mat. Fiz. 2 (1962), 894-926. MR 0183127 (32:609)
  • [12] J. M. Sanz-Serna, J. G. Verwer, and W. H. Hundsdorfer, Convergence and order reduction of Runge-Kutta schemes applied to evolutionary partial differential equations, Numer. Math. 50 (1987), 405-418. MR 875165 (88f:65146)
  • [13] B. P. Sommeijer, P. J. van der Houwen, and J. G. Verwer, On the treatment of time-dependent boundary conditions in splitting methods for parabolic differential equations, Internat. J. Numer. Math. Engrg. 17 (1981), 335-346. MR 608685 (83b:65093)
  • [14] D. A. Swayne, Time dependent boundary and interior forcing in locally one-dimensional schemes, SIAM J. Sci. Statist. Comput. 8 (1987), 755-767. MR 902741 (88i:65119)
  • [15] J. G. Verwer, Conductivity of locally one-dimensional splitting methods, Numer. Math. 44 (1984), 247-259. MR 753957 (85j:65038)
  • [16] J. G. Verwer and H. B. de Vries, Global extrapolation of a first order splitting method, SIAM J. Sci. Statist. Comput. 6 (1985), 771-780. MR 791198
  • [17] N. N. Yanenko, The method of fractional steps, Springer-Verlag, Berlin, 1971. MR 0307493 (46:6613)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65M12, 65M20

Retrieve articles in all journals with MSC: 65M12, 65M20

Additional Information

Keywords: Numerical analysis, initial-boundary value problems, LOD methods, unconditional convergence
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society