Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Efficient algorithms for periodic Hermite spline interpolation


Authors: G. Plonka and M. Tasche
Journal: Math. Comp. 58 (1992), 693-703
MSC: Primary 65D07; Secondary 65D05
DOI: https://doi.org/10.1090/S0025-5718-1992-1122075-0
MathSciNet review: 1122075
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Periodic Hermite spline interpolants on an equidistant lattice are represented by the Bézier technique as well as by the B-spline method. Circulant matrices are used to derive new explicit formulas for the periodic Hermite splines of degree m and defect $ r\;(1 \leq r \leq m)$. Applying the known de Casteljau algorithm and the de Boor algorithm, respectively, we obtain new efficient real algorithms for periodic Hermite spline interpolation.


References [Enhancements On Off] (What's this?)

  • [1] W. Böhm, G. Farin, and J. Kahmann, A survey of curve and surface methods in CAGD, Comput. Aided Geom. Design 1 (1984), 1-60.
  • [2] Philip J. Davis, Circulant matrices, John Wiley & Sons, New York-Chichester-Brisbane, 1979. A Wiley-Interscience Publication; Pure and Applied Mathematics. MR 543191
  • [3] R. T. Farouki and V. T. Rajan, On the numerical condition of polynomials in Bernstein form, Comput. Aided Geom. Design 4 (1987), no. 3, 191–216. MR 917780, https://doi.org/10.1016/0167-8396(87)90012-4
  • [4] Günter Meinardus and Gerhard Merz, Zur periodischen Spline-Interpolation, Spline-Funktionen (Tagung, Math. Forschungsinst., Oberwolfach, 1973), Bibliographisches Inst., Mannheim, 1974, pp. 177–195 (German). MR 0422957
  • [5] Günter Meinardus and Gerhard Merz, Hermite-Interpolation mit periodischen Spline-Funktionen, Numerical methods of approximation theory, Vol. 5 (Conf., Math. Res. Inst., Oberwolfach, 1979) Internat. Ser. Numer. Math., vol. 52, Birkhäuser, Basel-Boston, Mass., 1980, pp. 200–210 (German, with English summary). MR 573769
  • [6] Gerhard Merz and Wilhelm Sippel, Zur Konstruktion periodischer Hermite-Interpolationssplines bei äquidistanter Knotenverteilung, J. Approx. Theory 54 (1988), no. 1, 92–106 (German, with English summary). MR 951031, https://doi.org/10.1016/0021-9045(88)90118-9
  • [7] M. Reimer, Cardinal Hermite-spline-interpolation on the equidistant lattice, Numer. Math. 56 (1989), no. 4, 345–357. MR 1017835, https://doi.org/10.1007/BF01396609
  • [8] M. Reimer, Zur reellen Darstellung periodischer Hermite-Spline-Interpolierender bei äquidistantem Gitter mit Knotenshift, Splines in numerical analysis (Weissig, 1989) Math. Res., vol. 52, Akademie-Verlag, Berlin, 1989, pp. 125–134 (German). MR 1004257
  • [9] I. J. Schoenberg, Cardinal spline interpolation, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 12. MR 0420078
  • [10] D. Siepmann, Kardinale Spline-Interpolation bezüglich äquidistant verteilter Knoten, Dissertation, Dortmund, 1984.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D07, 65D05

Retrieve articles in all journals with MSC: 65D07, 65D05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1992-1122075-0
Keywords: Periodic Hermite spline interpolation, Bézier technique, B-spline technique, Bernstein polynomials, circulant matrices, Euler-Frobenius polynomials
Article copyright: © Copyright 1992 American Mathematical Society