Asymptotic inversion of incomplete gamma functions

Author:
N. M. Temme

Journal:
Math. Comp. **58** (1992), 755-764

MSC:
Primary 33B20

DOI:
https://doi.org/10.1090/S0025-5718-1992-1122079-8

MathSciNet review:
1122079

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The normalized incomplete gamma functions and are inverted for large values of the parameter *a*. That is, *x*-solutions of the equations

*a*. The approximations are obtained by using uniform asymptotic expansions of the incomplete gamma functions in which an error function is the dominant term. The inversion problem is started by inverting this error function term. Numerical results indicate that for obtaining an accuracy of four correct digits, the method can already be used for , although

*a*is a large parameter. It is indicated that the method can be applied to other cumulative distribution functions.

**[1]**Milton Abramowitz and Irene A. Stegun,*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR**0167642****[2]**D. J. Best and D. E. Roberts,*Algorithm*AS 91:*The percentage points of the**distribution*, Appl. Statist.**24**(1975), 385-388.**[3]**J. M. Blair, C. A. Edwards, and J. H. Johnson,*Rational Chebyshev approximations for the inverse of the error function*, Math. Comp.**30**(1976), no. 136, 827–830. MR**0421040**, https://doi.org/10.1090/S0025-5718-1976-0421040-7**[4]**T. A. Burgin,*The gamma distribution and inventory control*, Oper. Res. Q.**26**(1975), 507-525.**[5]**A. R. DiDonato and A. H. Morris, Jr.,*Computation of the incomplete gamma functions*, ACM Trans. Math. Software**12**(1986), 377-393.**[6]**Henry E. Fettis,*An asymptotic expansion for the upper percentage points of the 𝜒²-distribution*, Math. Comp.**33**(1979), no. 147, 1059–1064. MR**528059**, https://doi.org/10.1090/S0025-5718-1979-0528059-9**[7]**Anthony Strecok,*On the calculation of the inverse of the error function*, Math. Comp.**22**(1968), 144–158. MR**0223070**, https://doi.org/10.1090/S0025-5718-1968-0223070-2**[8]**N. M. Temme,*The asymptotic expansion of the incomplete gamma functions*, SIAM J. Math. Anal.**10**(1979), no. 4, 757–766. MR**533947**, https://doi.org/10.1137/0510071**[9]**N. M. Temme,*The uniform asymptotic expansion of a class of integrals related to cumulative distribution functions*, SIAM J. Math. Anal.**13**(1982), no. 2, 239–253. MR**647123**, https://doi.org/10.1137/0513017

Retrieve articles in *Mathematics of Computation*
with MSC:
33B20

Retrieve articles in all journals with MSC: 33B20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1992-1122079-8

Keywords:
Incomplete gamma function,
distribution,
inversion of gamma distribution,
asymptotic expansion

Article copyright:
© Copyright 1992
American Mathematical Society