On the Diophantine equation

Author:
Jean-Joël Delorme

Journal:
Math. Comp. **59** (1992), 703-715

MSC:
Primary 11D41; Secondary 11Y50

DOI:
https://doi.org/10.1090/S0025-5718-1992-1134725-3

MathSciNet review:
1134725

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we develop an elementary method for producing parametric solutions of the equation by reducing the resolution of a system including it to that of the equation

**[1]**Andrew Bremner,*A geometric approach to equal sums of sixth powers*, Proc. London Math. Soc.**43**(1981), 544-581. MR**635569 (83g:14018)****[2]**Simcha Brudno,*On generating infinitely many solutions of the Diophantine equation*, Math. Comp.**24**(1970), 453-454. MR**0271020 (42:5903)****[3]**Simcha Brudno and Irving Kaplansky,*Equal sums of sixth powers*, J. Number Theory**6**(1974), 401-403. MR**0371809 (51:8026)****[4]**Simcha Brudno,*Triples of sixth powers with equal sums*, Math. Comp.**30**(1976), 646-648. MR**0406923 (53:10709)****[5]**L. J. Lander, T. R. Parkin, and J. L. Selfridge,*A survey of equal sums of like powers*, Math. Comp.**21**(1967), 446-459. MR**0222008 (36:5060)****[6]**K. Subba-Rao,*On sums of sixth powers*, J. London Math. Soc.**9**(1934), 172-173.

Retrieve articles in *Mathematics of Computation*
with MSC:
11D41,
11Y50

Retrieve articles in all journals with MSC: 11D41, 11Y50

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1992-1134725-3

Article copyright:
© Copyright 1992
American Mathematical Society