A preconditioned GMRES method for nonsymmetric or indefinite problems

Authors:
Jinchao Xu and Xiao-Chuan Cai

Journal:
Math. Comp. **59** (1992), 311-319

MSC:
Primary 65F30; Secondary 65F10, 65F35, 65N30

MathSciNet review:
1134741

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A preconditioning technique is proposed for nonsymmetric or indefinite linear systems of equations. The main idea in our theory, roughly speaking, is first to use some "coarser mesh" space to correct the nonpositive portion of the eigenvalues of the underlying operator and then switch to use a symmetric positive definite preconditioner. The generality of our theory allows us to apply any known preconditioners that were orginally designed for symmetric positive definite problems to nonsymmetric or indefinite problems, without losing the optimality that the original one has. Some numerical experiments based on GMRES are reported.

**[1]**J. H. Bramble and J. E. Pasciak,*Preconditioned iterative methods for nonselfadjoint or indefinite elliptic boundary value problems*, Unification of finite element methods, North-Holland Math. Stud., vol. 94, North-Holland, Amsterdam, 1984, pp. 167–184. MR**845615**, 10.1016/S0304-0208(08)72624-0**[2]**X.-C. Cai,*Some domain decomposition algorithms for nonselfadjoint elliptic and parabolic partial differential equations*, Ph.D. dissertation, Tech. Rep. 461, Courant Institute, Sept. 1989.**[3]**Xiao-Chuan Cai, William D. Gropp, and David E. Keyes,*A comparison of some domain decomposition algorithms for nonsymmetric elliptic problems*, Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations (Norfolk, VA, 1991) SIAM, Philadelphia, PA, 1992, pp. 224–235. MR**1189575****[4]**Xiao-Chuan Cai and Olof B. Widlund,*Domain decomposition algorithms for indefinite elliptic problems*, SIAM J. Sci. Statist. Comput.**13**(1992), no. 1, 243–258. MR**1145185**, 10.1137/0913013**[5]**M. Dryja and O. B. Widlund,*An additive variant of the Schwarz alternating method for the case of many subregions*, Tech. Rep. 339, Dept. of Comp. Sci., Courant Insitute, 1987.**[6]**Z. Leyk,*Domain decomposition for nonselfadjoint operators*, Tech. Rep. 69, MSI, Cornell, 1990.**[7]**Youcef Saad and Martin H. Schultz,*GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems*, SIAM J. Sci. Statist. Comput.**7**(1986), no. 3, 856–869. MR**848568**, 10.1137/0907058**[8]**Stanley C. Eisenstat, Howard C. Elman, and Martin H. Schultz,*Variational iterative methods for nonsymmetric systems of linear equations*, SIAM J. Numer. Anal.**20**(1983), no. 2, 345–357. MR**694523**, 10.1137/0720023**[9]**Thomas A. Manteuffel and Seymour V. Parter,*Preconditioning and boundary conditions*, SIAM J. Numer. Anal.**27**(1990), no. 3, 656–694. MR**1041257**, 10.1137/0727040**[10]**J. Xu,*Theory of multilevel methods*, Ph.D. dissertation, Cornell, 1989.**[11]**-,*Iterative method by space decomposition and subspace correction*:*a unifying approach*, SIAM Review (to appear).**[12]**Jinchao Xu,*A new class of iterative methods for nonselfadjoint or indefinite problems*, SIAM J. Numer. Anal.**29**(1992), no. 2, 303–319. MR**1154268**, 10.1137/0729020

Retrieve articles in *Mathematics of Computation*
with MSC:
65F30,
65F10,
65F35,
65N30

Retrieve articles in all journals with MSC: 65F30, 65F10, 65F35, 65N30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1992-1134741-1

Article copyright:
© Copyright 1992
American Mathematical Society