Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Quadratic fields with special class groups


Author: James J. Solderitsch
Journal: Math. Comp. 59 (1992), 633-638
MSC: Primary 11R29; Secondary 11R11, 11Y40
DOI: https://doi.org/10.1090/S0025-5718-1992-1139091-5
MathSciNet review: 1139091
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For every prime number $ p \geq 5$ it is shown that, under certain hypotheses on $ x \in {\mathbf{Q}}$, the imaginary quadratic fields $ {\mathbf{Q}}(\sqrt {{x^{2p}} - 6{x^p} + 1} )$ have ideal class groups with noncyclic p-parts. Several numerical examples with $ p = 5$ and 7 are presented. These include the field

$\displaystyle {\mathbf{Q}}(\sqrt { - 4805446123032518648268510536} ).$

The 7-part of its class group is isomorphic to $ C(7) \times C(7) \times C(7)$, where $ C(n)$ denotes a cyclic group of order n.

References [Enhancements On Off] (What's this?)

  • [1] D. A. Buell, Class groups of quadratic fields, Math. Comp. 30 (1976), 610-623. MR 0404205 (53:8008)
  • [2] M. Craig, A type of class groups for imaginary fields, Acta Arith. 22 (1973), 449-459. MR 0318098 (47:6647)
  • [3] F. Diaz y Diaz, D. Shanks, and H. C. Williams, Quadratic fields with 3-rank equal to 4, Math. Comp. 33 (1979), 836-840. MR 521299 (80i:12004)
  • [4] P. Llorente and J. Quer, unpublished tables.
  • [5] J. Quer, Corps quadratiques de 3-rang 6 et courbes elliptiques de rang 12, C. R. Acad. Sci. Paris 305 (1987), 215-218. MR 907945 (88j:11074)
  • [6] R. Schoof, Class groups of complex quadratic fields, Math. Comp. 41 (1983), 295-302. MR 701640 (84h:12005)
  • [7] D. Shanks, A quadratic field of prime discriminant requiring three generators for its class group, and related theory, Acta Arith. 21 (1972), 71-87. MR 0309899 (46:9003)
  • [8] -, Class number, a theory of factorization and genera, Proc. Sympos. Pure Math., vol. 20, Amer. Math. Soc., Providence, RI, 1971, pp. 415-440. MR 0316385 (47:4932)
  • [9] J. J. Solderitsch, Quadratic fields with special class groups, thesis, Lehigh University, 1977.
  • [10] Y. Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka J. Math. 7 (1970), 57-76. MR 0266898 (42:1800)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11R29, 11R11, 11Y40

Retrieve articles in all journals with MSC: 11R29, 11R11, 11Y40


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1992-1139091-5
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society