Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On the Euclidean nature of four cyclic cubic fields


Authors: H. J. Godwin and J. R. Smith
Journal: Math. Comp. 60 (1993), 421-423
MSC: Primary 11R16; Secondary 11R04, 11R29, 11Y40
DOI: https://doi.org/10.1090/S0025-5718-1993-1149291-7
MathSciNet review: 1149291
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the cyclic cubic fields with discriminants $ {103^2},{109^2},{127^2}$, and $ {157^2}$ are Euclidean


References [Enhancements On Off] (What's this?)

  • [1] E. S. Barnes and H. P. F. Swinnerton-Dyer, The inhomogeneous minima of binary quadratic forms, Acta Math. 87 (1952), 259-322. MR 0053162 (14:730a)
  • [2] H. Heilbronn, On Euclid's algorithm in cubic self-conjugate fields, Proc. Cambridge Philos. Soc. 46 (1950), 377-382. MR 0035313 (11:716a)
  • [3] P. A. Samet, The product of non-homogeneous linear forms. I, Proc. Cambridge Philos. Soc. 50 (1954), 372-379. MR 0064820 (16:340d)
  • [4] -, The product of non-homogeneous linear forms. II, Proc. Cambridge Philos. Soc. 50 (1954), 380-390. MR 0064821 (16:340e)
  • [5] J. R. Smith, On Euclid's algorithm in some cyclic cubic fields, J. London Math. Soc. 44 (1969), 577-582. MR 0240075 (39:1429)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11R16, 11R04, 11R29, 11Y40

Retrieve articles in all journals with MSC: 11R16, 11R04, 11R29, 11Y40


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1993-1149291-7
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society