Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On fully discrete Galerkin approximations for partial integro-differential equations of parabolic type
HTML articles powered by AMS MathViewer

by Nai Ying Zhang PDF
Math. Comp. 60 (1993), 133-166 Request permission

Abstract:

The subject of this work is the application of fully discrete Galerkin finite element methods to initial-boundary value problems for linear partial integro-differential equations of parabolic type. We investigate numerical schemes based on the Padé discretization with respect to time and associated with certain quadrature formulas to approximate the integral term. A preliminary error estimate is established, which contains a term related to the quadrature rule to be specified. In particular, we consider quadrature rules with sparse quadrature points so as to limit the storage requirements, without sacrificing the order of overall convergence. For the backward Euler scheme, the Crank-Nicolson scheme, and a third-order (1,2) Padé-type scheme, the specific quadrature rules analyzed are based on the rectangular, the trapezoidal, and Simpson’s rule. For all the schemes studied, optimal-order error estimates are obtained in the case that the solution of the problem is smooth enough. Since this is important for our error analysis, we also discuss the regularity of the exact solutions of our equations. High-order regularity results with respect to both space and time are given for the solution of problems with smooth enough data.
References
Similar Articles
Additional Information
  • © Copyright 1993 American Mathematical Society
  • Journal: Math. Comp. 60 (1993), 133-166
  • MSC: Primary 65M60; Secondary 35K05, 65M15
  • DOI: https://doi.org/10.1090/S0025-5718-1993-1149295-4
  • MathSciNet review: 1149295