Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Modified FFTs for fused multiply-add architectures
HTML articles powered by AMS MathViewer

by Elliot Linzer and Ephraim Feig PDF
Math. Comp. 60 (1993), 347-361 Request permission

Abstract:

We introduce fast Fourier transform algorithms (FFTs) designed for fused multiply-add architectures. We show how to compute a complex discrete Fourier transform (DFT) of length $n = {2^m}$ with $\frac {8}{3}nm - \frac {{16}}{9}n + 2 - \frac {2}{9}{( - 1)^m}$ real multiply-adds. For real input, this algorithm uses $\frac {4}{3}nm - \frac {{17}}{9}n + 3 - \frac {1}{9}{( - 1)^m}$ real multiply-adds. We also describe efficient multidimensional FFTs. These algorithms can be used to compute the DFT of an $n \times n$ array of complex data using $\frac {{14}}{3}{n^2}m - \frac {4}{3}{n^2} - \frac {4}{9}n{( - 1)^m} + \frac {{16}}{9}$ real multiply-adds. For each problem studied, the number of multiply-adds that our algorithms use is a record upper bound for the number required.
References
  • L. Auslander, E. Feig, and S. Winograd, Abelian semisimple algebras and algorithms for the discrete Fourier transform, Adv. in Appl. Math. 5 (1984), no. 1, 31–55. MR 736549, DOI 10.1016/0196-8858(84)90003-4
  • Richard E. Blahut, Fast algorithms for digital signal processing, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1985. MR 777867
  • James W. Cooley and John W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comp. 19 (1965), 297–301. MR 178586, DOI 10.1090/S0025-5718-1965-0178586-1
  • Pierre Duhamel, Implementation of “split-radix” FFT algorithms for complex, real, and real-symmetric data, IEEE Trans. Acoust. Speech Signal Process. 34 (1986), no. 2, 285–295. MR 835552, DOI 10.1109/TASSP.1986.1164811
  • E. Feig, New algorithms for the 2-dimensional discrete Fourier transform, Technical Report RC8897, IBM Research, Yorktown Heights, NY, June 1981. M. T. Heideman and C. S. Burus, A bibliography of fast transform and convolution algorithms. II, Technical Report 8402, Rice Univ., Houston, TX, February 1984. E. Linzer and E. Feig, Implementation of efficient FFT algorithms on fused multiply/add architectures, Technical Report RC17330, IBM Research, Yorktown Heights, NY, 1990; IEEE Trans. Signal Process (to appear). —, New scaled DCT algorithms for fused multiply/add architectures, IEEE Internat. Conf. Accoust. Speech, Signal Process. (Toronto, Canada), IEEE, Piscataway, NJ, 1991, pp. 2201-2204. A. Mechentel, Private communication, 1990. R. K. Montoye, E. Hokenek, and S. L. Runyon, Design of the IBM RISC System/6000 floating point execution unit, IBM J. Res. Develop. 34 (1990), 71-77.
  • Henri J. Nussbaumer and Philippe Quandalle, Fast computation of discrete Fourier transforms using polynomial transforms, IEEE Trans. Acoust. Speech Signal Process. 27 (1979), no. 2, 169–181. MR 523618, DOI 10.1109/TASSP.1979.1163216
  • C. M. Rader and N. M. Brenner, A new principle for fast Fourier transformation, IEEE Trans. Acoust. Speech Signal Process. 24 (1976), 264-265. G. E. Rivard, Direct fast Fourier transform of bivariate functions, IEEE Trans. Acoust. Speech Signal Process. 25 (1977), 250-252. H. V. Sorensen, M. T. Heideman, and C. S. Burus, On computing the split-radix FFT, IEEE Trans. Acoust. Speech Signal Process. 34 (1986), 152-156.
  • Richard Tolimieri, Myoung An, and Chao Lu, Algorithms for discrete Fourier transform and convolution, Springer-Verlag, New York, 1989. MR 1201161, DOI 10.1007/978-1-4757-3854-4
  • Martin Vetterli and Henri J. Nussbaumer, Simple FFT and DCT algorithms with reduced number of operations, Signal Process. 6 (1984), no. 4, 267–278 (English, with French and German summaries). MR 760430, DOI 10.1016/0165-1684(84)90059-8
  • Shmuel Winograd, On computing the discrete Fourier transform, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 4, 1005–1006. MR 415993, DOI 10.1073/pnas.73.4.1005
  • —, On computing the DFT, Math. Comp. 32 (1978), 175-199.
  • S. Winograd, On the multiplicative complexity of the discrete Fourier transform, Adv. in Math. 32 (1979), no. 2, 83–117. MR 535617, DOI 10.1016/0001-8708(79)90037-9
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC: 65T20
  • Retrieve articles in all journals with MSC: 65T20
Additional Information
  • © Copyright 1993 American Mathematical Society
  • Journal: Math. Comp. 60 (1993), 347-361
  • MSC: Primary 65T20
  • DOI: https://doi.org/10.1090/S0025-5718-1993-1159169-0
  • MathSciNet review: 1159169