Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On the computation of unit groups and class groups of totally complex quartic fields


Authors: M. Pohst and J. Graf von Schmettow
Journal: Math. Comp. 60 (1993), 793-800
MSC: Primary 11Y40; Secondary 11R16, 11R27, 11R29
DOI: https://doi.org/10.1090/S0025-5718-1993-1164125-2
MathSciNet review: 1164125
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe the computation of the unit group and the class group of the 81322 totally complex quartic fields with discriminant less than one million. 45.6


References [Enhancements On Off] (What's this?)

  • [1] J. Buchmann, The computation of the fundamental unit in totally complex quartic orders, Math. Comp. 48 (1987), 39-54. MR 866097 (87m:11126)
  • [2] J. Buchmann and M. Pohst, On the complexity of computing class groups of algebraic number fields, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Proc. AAECC-6, Rome 1988, Lecture Notes in Comput. Sci., vol. 357, Springer-Verlag, 1989, pp. 122-131. MR 1008497 (90m:11168)
  • [3] J. Buchmann, M. Pohst, and J. v. Schmettow, On the computation of unit groups and class groups of totally real quartic fields, Math. Comp. 53 (1989), 387-397. MR 970698 (90e:11192)
  • [4] J. Buchmann and H. C. Williams, On principal ideal testing in algebraic number fields, J. Symbolic Comput. 4 (1987), 11-19. MR 908408 (88m:11093)
  • [5] U. Fincke and M. Pohst, A procedure for determining algebraic integers of given norm, Proc. EUROCAL 83, Lecture Notes in Comput. Sci., vol. 162, Springer-Verlag, 1983, pp. 194-202. MR 774811 (86k:11078)
  • [6] D. Ford, Enumeration of totally complex quartic fields of small discriminant, Computational Number Theory (A. Pethö, M. E. Pohst, H. C. Williams, and H. G. Zimmer, eds.), de Gruyter, 1991, pp. 129-138. MR 1151860 (93b:11140)
  • [7] M. Pohst and H. Zassenhaus, Über die Berechnung von Klassenzahlen und Klassengruppen algebraischer Zahlkörper, J. Reine Angew. Math. 361 (1985), 50-72. MR 807252 (87g:11147)
  • [8] -, Algorithmic algebraic number theory, Cambridge Univ. Press, New York, 1989. MR 1033013 (92b:11074)
  • [9] J. Graf v. Schmettow, KANT--a tool for computations in algebraic number fields, Computational Number Theory (A. Pethö, M. E. Pohst, H. C. Williams, and H. G. Zimmer, eds.), de Gruyter, 1991, pp. 321-330. MR 1151875 (92m:11151)
  • [10] -, Beiträge zur Klassengruppenberechnung, Dissertation, Düsseldorf, 1991.
  • [11] R. Zimmert, Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung, Invent. Math. 62 (1981), 367-380. MR 604833 (83g:12008)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11Y40, 11R16, 11R27, 11R29

Retrieve articles in all journals with MSC: 11Y40, 11R16, 11R27, 11R29


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1993-1164125-2
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society