Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Polynomial invariants of $ 2$-bridge knots through $ 22$ crossings


Authors: Taizo Kanenobu and Toshio Sumi
Journal: Math. Comp. 60 (1993), 771-778, S17
MSC: Primary 57M25
DOI: https://doi.org/10.1090/S0025-5718-1993-1176711-4
MathSciNet review: 1176711
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We calculate the homfly, Kauffman, Jones, Q, and Conway polynomials of 2-bridge knots through 22 crossings and list all the pairs sharing the same polynomial invariants.


References [Enhancements On Off] (What's this?)

  • [1] R. D. Brandt, W. B. R. Lickorish, and K. C. Millett, A polynomial invariant for unoriented knots and links, Invent. Math. 84 (1986), 563-573. MR 837528 (87m:57003)
  • [2] G. Burde and H. Zieschang, Knots, de Gruyter, Berlin and New York, 1986. MR 808776 (87b:57004)
  • [3] J. H. Conway, An enumeration of knots and links, Computational Problems in Abstract Algebra (J. Leech, ed.), Pergamon Press, New York, 1969, pp. 329-358. MR 0258014 (41:2661)
  • [4] R. H. Crowell, Genus of alternating link types, Ann. of Math. 69 (1959), 258-275. MR 0099665 (20:6103b)
  • [5] C. Ernst and D. W. Sumners, The growth of the number of prime knots, Math. Proc. Cambridge Philos. Soc. 102 (1987), 303-315. MR 898150 (88m:57006)
  • [6] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985), 239-246. MR 776477 (86e:57007)
  • [7] C. F. Ho, A new polynomial for knots and links--preliminary report, Abstracts Amer. Math. Soc. 6 (1985), 300.
  • [8] V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987), 335-388. MR 908150 (89c:46092)
  • [9] T. Kanenobu, Examples on polynomial invariants of knots and links, Math. Ann. 275 (1986), 555-572. MR 859330 (88b:57010)
  • [10] -, Examples on polynomnial invariants of knots and links II, Osaka J. Math. 26 (1989), 465-482. MR 1021426 (91e:57018)
  • [11] -, Relations between the Jones and Q polynomials for 2-bridge knots and links, Math. Ann. 285 (1989), 115-124. MR 1010195 (90i:57002)
  • [12] -, Jones and Q polynomials for 2-bridge knots and links, Proc. Amer. Math. Soc. 110 (1990), 835-841. MR 1025279 (91b:57004)
  • [13] L. H. Kauffman, On knots, Ann. of Math. Stud. no. 115, Princeton Univ. Press, Princeton, NJ, 1987.
  • [14] -, State models and the Jones polynomial, Topology 26 (1987), 395-407. MR 899057 (88f:57006)
  • [15] M. E. Kidwell, On the degree of the Brandt--Lickorish-Millett--Ho polynomial of a link, Proc. Amer. Math. Soc. 100 (1987), 755-762. MR 894450 (89b:57003)
  • [16] W. B. R. Lickorish, A relationship between link polynomials, Math. Proc. Cambridge Philos. Soc. 100 (1986), 109-112. MR 838656 (87g:57010)
  • [17] -, Linear skein theory and link polynomials, Topology Appl. 27 (1987), 265-274. MR 918536 (89b:57005)
  • [18] W. B. R. Lickorish and K. C. Millett, A polynomial invariant of oriented links, Topology 26 (1987), 107-141. MR 880512 (88b:57012)
  • [19] T. Miyauchi, On the highest degree of absolute polynomials of alternating links, Proc. Japan Acad. Ser. A 63 (1987), 174-177. MR 906987 (89b:57004)
  • [20] H. R. Morton, Seifert circles and knot polynomials, Math. Proc. Cambridge Philos. Soc. 99 (1986), 107-109. MR 809504 (87c:57006)
  • [21] K. Murasugi, On the genus of the alternating knot I, II, J. Math. Soc. Japan 10 (1958), 94-105 and 235-248. MR 0099664 (20:6103a)
  • [22] -, Jones polynomials and classical conjectures in knot theory, Topology 26 (1987), 187-194. MR 895570 (88m:57010)
  • [23] J. H. Przytycki and P. Traczyk, Invariants of links of Conway type, Kobe J. Math. 4 (1987), 115-139. MR 945888 (89h:57006)
  • [24] D. Rolfsen, Knots and links, Publish or Perish, Berkeley, 1976. MR 0515288 (58:24236)
  • [25] H. Schubert, Knoten mit zwei Brücken, Math. Z. 65 (1956), 133-170. MR 0082104 (18:498e)
  • [26] L. Siebenmann, Exercices sur les nœuds rationels, preprint.
  • [27] M. B. Thistlethwaite, A spanning tree expansion of the Jones polynomial, Topology 26 (1987), 297-309. MR 899051 (88h:57007)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 57M25

Retrieve articles in all journals with MSC: 57M25


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1993-1176711-4
Keywords: 2-bridge knot, homfly polynomial, Kauffman polynomial, Jones polynomial, Q polynomial, Conway polynomial
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society