Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Ambiguous classes in quadratic fields

Author: R. A. Mollin
Journal: Math. Comp. 61 (1993), 355-360
MSC: Primary 11R29; Secondary 11R09, 11R11
MathSciNet review: 1195434
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We provide sufficient conditions for the class group of a quadratic field (with positive or negative discriminant) to be generated by ambiguous ideals. This investigation was motivated by a recent result of F. Halter-Koch, which we show is false.

References [Enhancements On Off] (What's this?)

  • [1] F. Halter-Koch, Prime-producing quadratic polynomials and class numbers of quadratic orders, Computational Number Theory (A. Pethö, M. Pohst, H. C. Williams, and H. Zimmer, eds.), de Gruyter, Berlin, 1991, pp. 73-82. MR 1151856 (93c:11101)
  • [2] S. Louboutin, R. A. Mollin, and H. C. Williams, Class numbers of real quadratic fields, continued fractions, reduced ideals, prime-producing quadratic polynomials and quadratic residue covers, Canad. J. Math. 44 (1992), 1-19. MR 1178571 (93h:11117)
  • [3] R. A. Mollin and H. C. Williams, Prime producing quadratic polynomials and real quadratic fields of class number one, Number Theory (J. M. De Koninck and C. Levesque, eds.), de Gruyter, Berlin, 1989, pp 654-663. MR 1024594 (90m:11153)
  • [4] -, On prime valued polynomials and class numbers of real quadratic fields, Nagoya Math. J. 112 (1988), 143-151. MR 974269 (90c:11080)
  • [5] -, Solution of the class number one problem for real quadratic fields of extended Richaud-Degert type (with one possible exception), Number Theory (R. A. Mollin, ed.), de Gruyter, Berlin, 1990, pp. 417-425. MR 1106676 (92f:11144)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11R29, 11R09, 11R11

Retrieve articles in all journals with MSC: 11R29, 11R09, 11R11

Additional Information

Keywords: Ambiguous ideal, quadratic field, class number, exponent
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society