Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On the stability of variable stepsize rational approximations of holomorphic semigroups


Author: C. Palencia
Journal: Math. Comp. 62 (1994), 93-103
MSC: Primary 47D06; Secondary 34G10, 65J10, 65L99, 65M12
DOI: https://doi.org/10.1090/S0025-5718-1994-1201070-9
MathSciNet review: 1201070
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider variable stepsize time approximations of holomorphic semigroups on general Banach spaces. For strongly $ {\text{A}}(\theta )$-acceptable rational functions a general stability theorem is proved, which does not impose any constraint on the ratios between stepsizes.


References [Enhancements On Off] (What's this?)

  • [1] P. Brenner and V. Thomée, On rational approximations of semigroups, SIAM J. Numer. Anal. 16 (1979), 683-694. MR 537280 (80j:47052)
  • [2] P. Brenner, V. Thomée, and L. B. Wahlbin, Besov spaces and applications to difference methods for initial value problems, Lecture Notes in Math., vol. 434, Springer-Verlag, Berlin, 1975. MR 0461121 (57:1106)
  • [3] M. Crouzeix, S. Larsson, S. Piskarev, and V. Thomée, The stability of rational approximations of analytic semigroups, BIT 33 (1993), 74-84. MR 1326004 (96f:65069)
  • [4] K. Dekker and J. G. Verwer, Stability of Runge-Kutta methods for stiff nonlinear differential equations, North-Holland, Amsterdam, 1984. MR 774402 (86g:65003)
  • [5] N. Dunford and L. Schwartz, Linear operators, part I, Interscience, New York, 1958.
  • [6] H. O. Fattorini, The Cauchy problem, Addison-Wesley, Reading, MA, 1983. MR 692768 (84g:34003)
  • [7] R. Hersh and T. Kato, High-accuracy stable difference schemes for well-posed initial value problems, SIAM J. Numer. Anal. 16 (1979), 670-682. MR 537279 (80h:65036)
  • [8] S. Larsson, private communication.
  • [9] S. Larsson, V. Thomée, and L. B. Wahlbin, Finite-element methods for a strongly damped wave equation, IMA J. Numer. Anal. 11 (1991), 115-142. MR 1089551 (92d:65164)
  • [10] M. N. LeRoux, Semidiscretizations in time for parabolic problems, Math. Comp. 33 (1979), 919-931.
  • [11] C. Lubich and O. Nevanlinna, On resolvent conditions and stability estimates, BIT 31 (1991), 293-313. MR 1112225 (92h:65145)
  • [12] R. MacKelvey, Spectral measures, generalized resolvents, and functions of positive type, J. Math. Anal. Appl. 11 (1965), 447-477. MR 0208369 (34:8179)
  • [13] C. Palencia, A stability result for sectorial operators in Banach spaces, SIAM J. Numer. Anal. 30 (1993), 1373-1384. MR 1239826 (94j:65109)
  • [14] C. Palencia and J. M. Sanz-Serna, An extension of the Lax-Richtmyer theory, Numer. Math. 44 (1984), 109-115. MR 753959 (86c:65096)
  • [15] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983. MR 710486 (85g:47061)
  • [16] R. D. Richtmyer and K. W. Morton, Difference methods for initial value problems, 2nd ed., Interscience, New York, 1967. MR 0220455 (36:3515)
  • [17] J. M. Sanz-Serna, Stability and convergence in numerical analysis. 1: Linear problems--a simple comprehensive account, Nonlinear Equations and Applications (J. K. Hale and P. Martínez Amores, eds.), Pitman, Boston, 1985, pp. 64-113. MR 908899 (88h:65007)
  • [18] J. M. Sanz-Serna and C. Palencia, A general equivalence theorem in the theory of discretization methods, Math. Comp. 45 (1985), 143-152. MR 790648 (86h:65078)
  • [19] J. M. Sanz-Serna and J. G. Verwer, Stability and convergence at the PDE/stiff ODE interface, Appl. Numer. Math. 5 (1989), 117-132. MR 979551 (90c:65126)
  • [20] B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert spaces, North-Holland, Amsterdam, 1970. MR 0275190 (43:947)
  • [21] V. Thomée, Finite difference methods for linear parabolic equations, Handbook for Numerical Analysis, vol. I. (P. G. Ciarlet and J. L. Lions, eds.), North-Holland, Amsterdam, 1990.
  • [22] K. Yosida, Functional analysis, 6th ed., Springer-Verlag, Berlin, 1980. MR 617913 (82i:46002)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 47D06, 34G10, 65J10, 65L99, 65M12

Retrieve articles in all journals with MSC: 47D06, 34G10, 65J10, 65L99, 65M12


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1994-1201070-9
Keywords: Holomorphic semigroups, sectorial operators, Banach spaces, rational approximation, strongly $ {\text{A}}(\theta )$-acceptable, stability, variable stepsizes
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society