On the existence of Turyn sequences of length less than

Authors:
Genet M. Edmondson, Jennifer Seberry and Malcolm R. Anderson

Journal:
Math. Comp. **62** (1994), 351-362

MSC:
Primary 94A11

MathSciNet review:
1203733

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Some theoretical results and computational algorithms are described which verify previous calculations, prove some theoretical nonexistence results, and totally enumerate all inequivalent Turyn sequences of length less than 43, that is, the longer sequence has length less than 43.

**[1]**T. Andres,*Some properties of complementary sequences*, Master's Thesis, The University of Manitoba, Winnipeg, 1977.**[2]**H. Davenport,*The higher arithmetic: An introduction to the theory of numbers*, Harper Torchbooks/The Science Library, Harper & Brothers, New York, 1960. MR**0109802****[3]**Genet M. Edmondson,*More non-existent Turyn sequences*, Master's Thesis, University College, University of NSW, Australian Defence Force Academy, Canberra, 1991.**[4]**Shalom Eliahou, Michel Kervaire, and Bahman Saffari,*A new restriction on the lengths of Golay complementary sequences*, J. Combin. Theory Ser. A**55**(1990), no. 1, 49–59. MR**1070014**, 10.1016/0097-3165(90)90046-Y**[5]**Anthony V. Geramita and Jennifer Seberry,*Orthogonal designs*, Lecture Notes in Pure and Applied Mathematics, vol. 45, Marcel Dekker, Inc., New York, 1979. Quadratic forms and Hadamard matrices. MR**534614****[6]**Marcel J. E. Golay,*Complementary series*, IRE Trans.**IT-7**(1961), 82–87. MR**0125799****[7]**-,*Note on complementary series*, Proc. IRE**50**(1962), 84.**[8]**Malcolm Griffin,*There are no Golay complementary sequences of length 2⋅9^{𝑡}*, Aequationes Math.**15**(1977), no. 1, 73–77. MR**0490419****[9]**M. James,*Golay sequences*, Honours Thesis, University of Sydney, 1987.**[10]**Christos Koukouvinos, Stratis Kounias, and Jennifer Seberry,*Further results on base sequences, disjoint complementary sequences, 𝑂𝐷(4𝑡;𝑡,𝑡,𝑡,𝑡) and the excess of Hadamard matrices*, Ars Combin.**30**(1990), 241–255. MR**1088294****[11]**S. Kounias, C. Koukouvinos, and K. Sotirakoglou,*On Golay sequences*, Discrete Math.**92**(1991), no. 1-3, 177–185. MR**1140585**, 10.1016/0012-365X(91)90279-B**[12]**C. Koukouvinos, S. Kounias, and K. Sotirakoglou,*On base and Turyn sequences*, Math. Comp.**55**(1990), no. 192, 825–837. MR**1023764**, 10.1090/S0025-5718-1990-1023764-7**[13]**Christos Koukouvinos and Jennifer Seberry,*Addendum to: “Further results on base sequences, disjoint complementary sequences, 𝑂𝐷(4𝑡;𝑡,𝑡,𝑡,𝑡) and the excess of Hadamard matrices” [Ars Combin. 30 (1990), 241–255; MR1088294 (91m:05037)] by Koukouvinos, S. Kounias and Seberry*, Proceedings of the Twenty-second Southeastern Conference on Combinatorics, Graph Theory, and Computing (Baton Rouge, LA, 1991), 1991, pp. 97–103. MR**1152061****[14]**Marcel J. E. Golay,*Complementary series*, IRE Trans.**IT-7**(1961), 82–87. MR**0125799****[15]**Jennifer Seberry and Mieko Yamada,*Hadamard matrices, sequences, and block designs*, Contemporary design theory, Wiley-Intersci. Ser. Discrete Math. Optim., Wiley, New York, 1992, pp. 431–560. MR**1178508****[16]**C. C. Tseng,*Signal multiplexing in surface-wave delay lines using orthogonal pairs of Golay's complementary sequences*, IEEE Trans. Sonics Ultrasonics**18**(1971), 103-107.**[17]**C. C. Tseng and C. L. Liu,*Complementary sets of sequences*, IEEE Trans. Information Theory**IT-18**(1972), 644–652. MR**0398660****[18]**Richard J. Turyn,*Four-phase Barker codes*, IEEE Trans. Information Theory**IT-20**(1974), 366–371. MR**0376236****[19]**R. J. Turyn,*Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse compression, and surface wave encodings*, J. Combinatorial Theory Ser. A**16**(1974), 313–333. MR**0345847****[20]**G. R. Welti,*Quaternary codes for pulsed radar*, IRE Trans. Inform. Theory Ser. A**IT-6**(1960), 400-408.**[21]**Earl Glen Whitehead, Jr.,*Autocorrelation of**sequences*, Combinatorial Mathematics: Proc. Internat. Conf. (D. A. Holten and Jennifer Seberry, eds.), Lecture Notes in Math., vol. 686, Springer-Verlag, Berlin-Heidelberg-New York, 1978.**[22]**C. H. Yang,*Maximal binary matrices and sum of two squares*, Math. Comput.**30**(1976), no. 133, 148–153. MR**0409235**, 10.1090/S0025-5718-1976-0409235-X**[23]**C. H. Yang,*Hadamard matrices, finite sequences, and polynomials defined on the unit circle*, Math. Comp.**33**(1979), no. 146, 688–693. MR**525685**, 10.1090/S0025-5718-1979-0525685-8**[24]**C. H. Yang,*Hadamard matrices and 𝛿-codes of length 3𝑛*, Proc. Amer. Math. Soc.**85**(1982), no. 3, 480–482. MR**656128**, 10.1090/S0002-9939-1982-0656128-3**[25]**C. H. Yang,*A composition theorem for 𝛿-codes*, Proc. Amer. Math. Soc.**89**(1983), no. 2, 375–378. MR**712655**, 10.1090/S0002-9939-1983-0712655-2**[26]**C. H. Yang,*Lagrange identity for polynomials and 𝛿-codes of lengths 7𝑡 and 13𝑡*, Proc. Amer. Math. Soc.**88**(1983), no. 4, 746–750. MR**702312**, 10.1090/S0002-9939-1983-0702312-0**[27]**C. H. Yang,*On composition of four-symbol 𝛿-codes and Hadamard matrices*, Proc. Amer. Math. Soc.**107**(1989), no. 3, 763–776. MR**979054**, 10.1090/S0002-9939-1989-0979054-5

Retrieve articles in *Mathematics of Computation*
with MSC:
94A11

Retrieve articles in all journals with MSC: 94A11

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1994-1203733-8

Article copyright:
© Copyright 1994
American Mathematical Society