On the computation of impasse points of quasilinear differential-algebraic equations

Authors:
Patrick J. Rabier and Werner C. Rheinboldt

Journal:
Math. Comp. **62** (1994), 133-154

MSC:
Primary 65L05; Secondary 34A09, 34A47, 58F14

MathSciNet review:
1208224

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present computational algorithms for the calculation of impasse points and higher-order singularities in quasi-linear differential-algebraic equations. Our method combines a reduction step, transforming the DAE into a singular ODE, with an augmentation procedure inspired by numerical bifurcation theory. Singularities are characterized by the vanishing of a scalar quantity that may be monitored along any trajectory. Two numerical examples with physical relevance are given.

**[1]**R. Abraham, J. E. Marsden, and T. Ratiu,*Manifolds, tensor analysis, and applications*, 2nd ed., Applied Mathematical Sciences, vol. 75, Springer-Verlag, New York, 1988. MR**960687****[2]**Richard P. Brent,*Some efficient algorithms for solving systems of nonlinear equations*, SIAM J. Numer. Anal.**10**(1973), 327–344. Collection of articles dedicated to the memory of George E. Forsythe. MR**0331764****[3]**K. E. Brenan, S. L. Campbell, and L. R. Petzold,*Numerical solution of initial value problems in differential-algebraic equations*, North-Holland Publishing Co., New York, 1989. MR**1101809****[4]**George D. Byrne and Alan C. Hindmarsh,*Stiff ODE solvers: a review of current and coming attractions*, J. Comput. Phys.**70**(1987), no. 1, 1–62. MR**888931**, 10.1016/0021-9991(87)90001-5**[5]**L. O. Chua,*Introduction to nonlinear networks*, McGraw-Hill, New York, 1969.**[6]**Leon O. Chua and An-Chang Deng,*Impasse points. I. Numerical aspects*, Internat. J. Circuit Theory Appl.**17**(1989), no. 2, 213–235. MR**991519**, 10.1002/cta.4490170207**[7]**Ernst Hairer, Christian Lubich, and Michel Roche,*The numerical solution of differential-algebraic systems by Runge-Kutta methods*, Lecture Notes in Mathematics, vol. 1409, Springer-Verlag, Berlin, 1989. MR**1027594****[8]**F. A. Potra and W. C. Rheinboldt,*Differential-geometric techniques for solving differential-algebraic equations*, Real-Time Integration Methods for Mechanical System Simulation (E. J. Haug and R. C. Deyo, eds.), Springer-Verlag, New York, 1991, pp. 155-192.**[9]**Patrick J. Rabier,*Implicit differential equations near a singular point*, J. Math. Anal. Appl.**144**(1989), no. 2, 425–449. MR**1027045**, 10.1016/0022-247X(89)90344-2**[10]**Patrick J. Rabier and Werner C. Rheinboldt,*A general existence and uniqueness theory for implicit differential-algebraic equations*, Differential Integral Equations**4**(1991), no. 3, 563–582. MR**1097919****[11]**-,*A geometric treatment of implicit differential-algebraic equations*, Tech. Report TR-ICMA-162, Inst. Comput. Math. Appl., Univ. of Pittsburgh, June 1991; J. Differential Equations (in press).**[12]**-,*On impasse points of quasilinear differential-algebraic equations*, Tech. Report TR-ICMA-171, Inst. Comput. Math. Appl., Univ. of Pittsburgh, April 1992; J. Math. Anal. Appl. (in press).**[13]**Werner C. Rheinboldt,*Numerical analysis of parametrized nonlinear equations*, University of Arkansas Lecture Notes in the Mathematical Sciences, 7, John Wiley & Sons, Inc., New York, 1986. A Wiley-Interscience Publication. MR**815107****[14]**Werner C. Rheinboldt,*On the computation of multidimensional solution manifolds of parametrized equations*, Numer. Math.**53**(1988), no. 1-2, 165–181. MR**946374**, 10.1007/BF01395883**[15]**Werner C. Rheinboldt,*On the existence and uniqueness of solutions of nonlinear semi-implicit differential-algebraic equations*, Nonlinear Anal.**16**(1991), no. 7-8, 647–661. MR**1097322**, 10.1016/0362-546X(91)90172-W**[16]**G. W. Stewart,*Introduction to matrix computations*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1973. Computer Science and Applied Mathematics. MR**0458818****[17]**Floris Takens,*Constrained equations; a study of implicit differential equations and their discontinuous solutions*, Mathematisch Institut, Rijksuniversiteit, Groningen, 1975. Report ZW-75-03. MR**0478236**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L05,
34A09,
34A47,
58F14

Retrieve articles in all journals with MSC: 65L05, 34A09, 34A47, 58F14

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1994-1208224-6

Article copyright:
© Copyright 1994
American Mathematical Society