Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations


Author: R. Verfürth
Journal: Math. Comp. 62 (1994), 445-475
MSC: Primary 65N30
DOI: https://doi.org/10.1090/S0025-5718-1994-1213837-1
MathSciNet review: 1213837
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a general framework for deriving a posteriori error estimates for approximate solutions of nonlinear problems. In a first step it is proven that the error of the approximate solution can be bounded from above and from below by an appropriate norm of its residual. In a second step this norm of the residual is bounded from above and from below by a similar norm of a suitable finite-dimensional approximation of the residual. This quantity can easily be evaluated, and for many practical applications sharp explicit upper and lower bounds are readily obtained. The general results are then applied to finite element discretizations of scalar quasi-linear elliptic partial differential equations of 2nd order, the eigenvalue problem for scalar linear elliptic operators of 2nd order, and the stationary incompressible Navier-Stokes equations. They immediately yield a posteriori error estimates, which can easily be computed from the given data of the problem and the computed numerical solution and which give global upper and local lower bounds on the error of the numerical solution.


References [Enhancements On Off] (What's this?)

  • [1] R. A. Adams, Sobolev spaces, Academic Press, New York, 1975. MR 0450957 (56:9247)
  • [2] I. Babuška, Feedback, adaptivity, and a posteriori estimates in finite elements: aims, theory, and experience, Accuracy Estimates and Adaptive Refinements in Finite Element Computation (I. Babuška et al., eds.), Wiley, New York, 1986, pp. 3-23. MR 879443
  • [3] I. Babuška and W. Gui, Basic principles of feedback and adaptive approaches in the finite element method, Comput. Methods Appl. Mech. Engrg. 55 (1986), 27-42. MR 845412 (87g:65090)
  • [4] I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), 736-754. MR 0483395 (58:3400)
  • [5] -, A posteriori error estimates for the finite element method, Internat. J. Numer. Methods Engrg. 12 (1978), 1597-1615.
  • [6] I. Babuška and R. Rodriguez, The problem of the selection of an a-posteriori error indicator based on smoothing techniques, Internat. J. Numer. Methods. Engrg. (to appear). MR 1201743 (93k:65089)
  • [7] R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985), 283-301. MR 777265 (86g:65207)
  • [8] R. E. Bank and D. B. Welfert, A posteriori error estimates for the Stokes equations: a comparison, Comput. Methods Appl. Mech. Engrg. 87 (1990), 323-340. MR 1077660 (91g:76061)
  • [9] J. Baranger and H. El Amri, Estimateur a posteriori d'erreur pour le calcul adaptif d'écoulements quasi-Newtoniens, RAIRO Modél. Math. Anal. Numér. 25 (1991), 31-48. MR 1086839 (91m:76070)
  • [10] Ph. G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
  • [11] Ph. Clément, Approximation by finite element functions using local regularization, RAIRO Modél. Math. Anal. Numér. 2 (1975), 77-84.
  • [12] M. Crouzeix and J. Rappaz, On numerical approximation in bifurcation theory, Research in Appl. Math., vol. 13, Masson, Paris; Springer-Verlag, Berlin, 1990. MR 1069945 (92d:65003)
  • [13] R. Duran, M. A. Muschietti, and R. Rodriguez, On the asymptotic exactness of error estimators for linear triangular elements, Numer. Math. 59 (1991), 107-127. MR 1106377 (92b:65086)
  • [14] R. Duran and R. Rodriguez, On the asymptotic exactness of Bank-Weiser's estimator, Numer. Math. 62 (1992), 297-303. MR 1169006 (93e:65135)
  • [15] K. Eriksson, Improved accuracy by adapted mesh-refinements in the finite element method, Math. Comp. 44 (1985), 321-343. MR 777267 (86j:65155a)
  • [16] K. Eriksson and C. Johnson, An adaptive finite element method for linear elliptic problems, Math. Comp. 50 (1988), 361-383. MR 929542 (89c:65119)
  • [17] V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations: Theory and algorithms, Springer Ser. Comput. Math., vol. 5, Springer, Berlin, 1986. MR 851383 (88b:65129)
  • [18] J. T. Oden, L. Demkowicz, W. Rachowicz, and T. A. Westermann, Toward a universal h--p adaptive finite element strategy, Part 2. A posteriori error estimation, Comput. Methods Appl. Mech. Engrg. 77 (1989), 113-180. MR 1030147 (91b:65123b)
  • [19] J. Pousin and J. Rappaz, Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems (Report), EPFL, Lausanne, 1992.
  • [20] W. C. Rheinboldt, On a theory of mesh-refinement processes, SIAM J. Numer. Anal. 17 (1980), 766-778. MR 595442 (82e:65052)
  • [21] T. Strouboulis and K. A. Hague, Recent experiences with error estimation and adaptivity I: Review of error estimators for scalar elliptic problems, Comput. Methods Appl. Mech. Engrg. 97 (1992), 399-436. MR 1168733 (93a:65138)
  • [22] T. Strouboulis and J. T. Oden, A posteriori error estimation of finite element approximations in fluid mechanics, Comput. Methods Appl. Mech. Engrg. 78 (1990), 201-242. MR 1040688 (91a:76066)
  • [23] L. Tobiska and R. Verfürth, Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations (Report), Universities Magdeburg-Zürich, 1991.
  • [24] R. Verfürth, Finite element approximation of incompressible Navier-Stokes equations with slip boundary conditions, Numer. Math. 50 (1987), 697-721. MR 884296 (88g:65121)
  • [25] -, A posteriori error estimators for the Stokes equations, Numer. Math. 55 (1989), 309-325. MR 993474 (90d:65187)
  • [26] -, Finite element approximation of incompressible Navier-Stokes equations with slip boundary conditions. II, Numer. Math. 59 (1991), 615-636. MR 1124131 (92k:65170)
  • [27] -, A posteriori error estimators and adaptive mesh-refinement techniques for the Navier-Stokes equations, Incompressible CFD-Trends and Advances (M. D. Gunzburger and R. A. Nicolaides, eds.), Cambridge Univ Press, Cambridge, 1993, pp. 447-477.
  • [28] -, A posteriori error estimation and adaptive mesh-refinement techniques, J. Comput. Appl. Math. (to appear). MR 1284252 (95c:65171)
  • [29] J. Z. Zhu and O. C. Zienkiewicz, Adaptive techniques in the finite element method, Comm. Appl. Numer. Methods 4 (1988), 197-204.
  • [30] O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg. 24 (1987), 337-357. MR 875306 (87m:73055)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30

Retrieve articles in all journals with MSC: 65N30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1994-1213837-1
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society