Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On the numerical integration of Walsh series by number-theoretic methods


Authors: Gerhard Larcher and Claudia Traunfellner
Journal: Math. Comp. 63 (1994), 277-291
MSC: Primary 65D30; Secondary 11K45
DOI: https://doi.org/10.1090/S0025-5718-1994-1234426-9
MathSciNet review: 1234426
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In analogy to the theory of good lattice points for the numerical integration of rapidly converging Fourier series, a theory for the fast numerical integration of Walsh series is developed. The basis for this theory is provided by a class of very well-distributed point sets in the s-dimensional unit cube, the so-called (t, m, s)-nets.


References [Enhancements On Off] (What's this?)

  • [1] N. S. Bahvalov, Approximate computation of multiple integrals, Vestnik. Moskov. Univ. Ser. I Mat. Mekh. Astronom. Fiz. Khim. 4 (1959), 3-18. (Russian) MR 0115275 (22:6077)
  • [2] H. E. Chrestenson, A class of generalized Walsh functions, Pacific J. Math. 5 (1955), 17-31. MR 0068659 (16:920c)
  • [3] T. Hansen, G. L. Mullen, and H. Niederreiter, Good parameters for a class of node sets in quasi-Monte Carlo integration, Math. Comp. 61 (1993), 225-234. MR 1182244 (94e:11088)
  • [4] E. Hlawka, Zur angenäherten Berechnung mehrfacher Integrale, Monatsh. Math. 66 (1962), 140-151. MR 0143329 (26:888)
  • [5] L. K. Hua and Y. Wang, Applications of number theory to numerical analysis, Springer-Verlag, Berlin, 1981. MR 617192 (83g:10034)
  • [6] N. M. Korobov, The approximate computation of multiple integrals, Dokl. Akad. Nauk SSSR 124 (1959), 1207-1210. (Russian) MR 0104086 (21:2848)
  • [7] -, Number-theoretical methods in approximate analysis, Fizmatgiz. Moscow, 1963. (Russian)
  • [8] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley, New York, 1974. MR 0419394 (54:7415)
  • [9] G. Larcher, Nets obtained from rational functions over finite fields, Acta Arith. 63 (1993), 1-13. MR 1201615 (94c:11067)
  • [10] K. Niederdrenk, Die endliche Fourier- und Walshtransformation mit einer Einführung in die Bildverarbeitung, Vieweg, Braunschweig, 1982. MR 735256 (85g:94001)
  • [11] H. Niederreiter, Pseudo-random-numbers and optimal coefficients, Adv. Math. 26 (1977), 99-181. MR 0476679 (57:16238)
  • [12] -, Existence of good lattice points in the sense of Hlawka, Monatsh. Math. 86 (1978), 203-219. MR 517026 (80e:10039)
  • [13] -, Dyadic fractions with small partial quotients, Monatsh. Math. 101 (1986), 309-315. MR 851952 (87k:11015)
  • [14] -, Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987), 273-337. MR 918037 (89c:11120)
  • [15] -, Low-discrepancy and low-dispersion sequences, J. Number Theory 30 (1988), 51-70. MR 960233 (89k:11064)
  • [16] -, Low-discrepancy point sets obtained by digital constructions over finite fields, Czechoslovak Math. J. 42 (1992), 143-166. MR 1152177 (93c:11055)
  • [17] -, Existence theorems for efficient lattice rules, Numerical Integration: Recent Developments, Software and Applications (T. O. Espelid and A. Genz, eds.), Kluwer, Dordrecht, 1992, pp. 1-80.
  • [18] I. F. Šarygin, A lower estimate for the error of quadrature formulas for certain classes of functions, Ž. Vyčisl. Mat. i Mat. Fiz. 3 (1963), 370-376. (Russian) MR 0150952 (27:938)
  • [19] I. M. Sobol', The distribution of points in a cube and the approximate evaluation of integrals, Ž. Vyčisl. Mat. i Mat. Fiz. 7 (1967), 784-802. (Russian) MR 0219238 (36:2321)
  • [20] -, Multidimensional quadrature formulas and Haar functions, Nauka, Moscow, 1969. (Russian) MR 0422968 (54:10952)
  • [21] S. K. Zaremba, La méthode des "bon treillis" pour le calcul numérique des integrals multiples, Applications of Number Theory to Numerical Analysis (S. K. Zaremba, ed.), Academic Press, New York, 1972, pp. 39-119. MR 0343530 (49:8271)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D30, 11K45

Retrieve articles in all journals with MSC: 65D30, 11K45


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1994-1234426-9
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society