Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A generalized sampling theorem for locally compact abelian groups


Author: Adel Faridani
Journal: Math. Comp. 63 (1994), 307-327
MSC: Primary 43A25; Secondary 65Dxx, 65T20, 94A05
DOI: https://doi.org/10.1090/S0025-5718-1994-1240658-6
MathSciNet review: 1240658
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a sampling theorem for locally compact abelian groups. The sampling sets are finite unions of cosets of a closed subgroup. This generalizes the well-known case of nonequidistant but periodic sampling on the real line. For nonbandlimited functions an $ {L_1}$-type estimate for the aliasing error is given. We discuss the application of the theorem to a class of sampling sets in $ {{\mathbf{R}}^s}$, give a general algorithm for a computer implementation, present a detailed description of the implementation for the s-dimensional torus group, and point out connections to lattice rules for numerical integration.


References [Enhancements On Off] (What's this?)

  • [1] J. J. Benedetto, Irregular sampling and frames, Wavelets--A Tutorial in Theory and Applications (C. K. Chui, ed.), Academic Press, New York, 1992, pp. 445-507. MR 1161260 (93c:42030)
  • [2] G. H. Bradley, Algorithms for Hermite and Smith normal matrices and linear Diophantine equations, Math. Comp. 25 (1971), 897-907. MR 0301909 (46:1064)
  • [3] P. L. Butzer and G. Hinsen, Two-dimensional nonuniform sampling expansions-an iterative approach. I, II, Appl. Anal. 32 (1989), 53-67, 69-85.
  • [4] P. L. Butzer, W. Splettstößer, and R. L. Stens, The sampling theorem and linear prediction in signal analysis, Jahresber. Deutsch. Math.-Verein. 90 (1988), 1-70. MR 928745 (89b:94006)
  • [5] K. F. Cheung and R. J. Marks II, Imaging sampling below the Nyquist density without aliasing, J. Opt. Soc. Amer. A 7 (1990), 92-105.
  • [6] K. F. Cheung, A multidimensional extension of Papoulis' generalized sampling expansion with the application in minimum density sampling, Advanced Topics in Shannon Sampling and Interpolation Theory (R. J. Marks II, ed.), Springer, New York, 1993, pp. 85-119. MR 1221746
  • [7] L. Desbat, Efficient sampling on coarse grids in tomography, Inverse Problems 9 (1993), 251-269. MR 1214287 (93m:65178)
  • [8] A. Faridani, An application of a multidimensional sampling theorem to computed tomography, Contemp. Math., vol. 113, Amer. Math. Soc., Providence, RI, 1990, pp. 65-80. MR 1108645 (92c:65159)
  • [9] H. G. Feichtinger and K. Gröchenig, Irregular sampling theorems and series expansions of band-limited functions, J. Math. Anal. Appl. 167 (1992), 530-556. MR 1168605 (93g:41003)
  • [10] -, Theory and practice of irregular sampling, Wavelets: Mathematics and Applications (J. J. Benedetto and M. W. Frazier, eds.), CRC Press, 1993, pp. 305-363. MR 1247520 (94i:94008)
  • [11] N. T. Gaarder, A Note on the multidimensional sampling theorem, Proc. IEEE 60 (1972), 247-248. MR 0359975 (50:12425)
  • [12] K. Gröchenig, Reconstruction algorithms in irregular sampling, Math. Comp. 59 (1992), 181-194. MR 1134729 (93a:41025)
  • [13] E. Hewitt and K. A. Ross, Abstract harmonic analysis, Volumes I, II, Springer, New York and Berlin, 1979, 1970.
  • [14] J. R. Higgins, Five short stories about the cardinal series, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 45-89. MR 766960 (86k:42045)
  • [15] A. J. Jerri, The Shannon sampling theorem-its various extensions and applications: a tutorial review, Proc. IEEE 65 (1977), 1565-1596.
  • [16] R. E. Kahn and B. Liu, Sampling representations and the optimum reconstruction of signals, IEEE Trans. Inform. Theory 11 (1965), 339-347.
  • [17] R. Kannan and A. Bachern, Polynomial algorithms for computing the Smith and Hermite Normal Forms of an integer matrix, SIAM J. Comput. 8 (1979), 499-507. MR 573842 (81k:15002)
  • [18] I. Kluvanek, Sampling theorem in abstract harmonic analysis, Mat. Časopis Sloven. Akad. Vied 15 (1965), 43-48. MR 0188717 (32:6153)
  • [19] A. Kohlenberg, Exact interpolation of bandlimited functions, J. Appl. Phys. 24 (1953), 1432-1436. MR 0060630 (15:700b)
  • [20] H. J. Landau, Letter to F. Natterer, 1988.
  • [21] -, A sparse regular sequence of exponentials closed on large sets, Bull. Amer. Math. Soc. 70 (1964), 566-569. MR 0206615 (34:6433)
  • [22] J. N. Lyness, An introduction to lattice rules and their generator matrices, IMA J. Numer. Anal. 9 (1989), 405-419. MR 1011399 (91b:65029)
  • [23] J. N. Lyness, T. Sørevik, and P. Keast, Notes on integration and integer sublattices, Math. Comp. 56 (1991), 243-255. MR 1052101 (91m:65071)
  • [24] R. J. Marks II, Introduction to Shannon sampling and interpolation theory, Springer, New York, 1991. MR 1077829 (92j:41001)
  • [25] R. J. Marks II (ed.), Advanced topics in Shannon sampling and interpolation theory, Springer, New York, 1993. MR 1221743 (94i:94004)
  • [26] F. Marvasti, Nonuniform sampling, Advanced Topics in Shannon Sampling and Interpolation Theory (R. J. Marks II, ed.), Springer, New York, 1993, pp. 121-156. MR 1221747
  • [27] F. Natterer, The mathematics of computerized tomography, Wiley, New York, 1986. MR 856916 (88m:44008)
  • [28] -, Sampling in fan-beam tomography, SIAM J. Appl. Math. 53 (1993), 358-380. MR 1212754 (93m:92011)
  • [29] H. Niederreiter, Random number generation and quasi-Monte Carlo methods, SIAM, Philadelphia, 1992. MR 1172997 (93h:65008)
  • [30] -, Lattice rules for multiple integration, Stochastic Optimization: Numerical Methods and Technical Applications (K. Marti, ed.), Lecture Notes in Econom. and Math. Systems, vol. 379, Springer, Berlin, 1992, pp. 15-26.
  • [31] M. Newman, Integral matrices, Academic Press, New York, 1972. MR 0340283 (49:5038)
  • [32] A. Papoulis, Signal analysis, McGraw-Hill, New York, 1977.
  • [33] D. P. Petersen and D. Middleton, Sampling and reconstruction of wave-number-limited functions in N-dimensional Euclidean space, Inform. Control 5 (1962), 279-323. MR 0151331 (27:1317)
  • [34] P. A. Rattey and A. G. Lindgren, Sampling the 2-D Radon transform, IEEE Trans. Acoust. Speech Signal Process. 29 (1981), 994-1002. MR 629035 (82i:65080)
  • [35] W. Rudin, Fourier analysis on groups, Wiley, New York, 1962. MR 0152834 (27:2808)
  • [36] I. H. Sloan, Numerical integration in high dimensions-The lattice rule approach, Numerical Integration--Recent Developments, Software and Applications (T. O. Espelid and A. Genz, eds.), Kluwer, Dordrecht, 1992, pp. 55-69. MR 1198898 (94c:65029)
  • [37] I. H. Sloan and P. J. Kachoyan, Lattice methods for multiple integration: theory, error analysis and examples, SIAM J. Numer. Anal. 24 (1987), 116-128. MR 874739 (88e:65023)
  • [38] I. H. Sloan and J. N. Lyness, The representation of lattice quadrature rules as multiple sums, Math. Comp. 52 (1989), 81-94. MR 947468 (90a:65053)
  • [39] J. L. Yen, On nonuniform sampling of bandwidth-limited signals, IRE Trans. Circuit Theory 3 (1956), 251-257.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 43A25, 65Dxx, 65T20, 94A05

Retrieve articles in all journals with MSC: 43A25, 65Dxx, 65T20, 94A05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1994-1240658-6
Keywords: Sampling theorem, nonuniform sampling, multidimensional sampling, periodic sampling, bunched sampling, lattice rules, locally compact abelian groups
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society