Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Pointwise a posteriori error estimates for elliptic problems on highly graded meshes


Author: Ricardo H. Nochetto
Journal: Math. Comp. 64 (1995), 1-22
MSC: Primary 65N15; Secondary 65N50
DOI: https://doi.org/10.1090/S0025-5718-1995-1270622-3
MathSciNet review: 1270622
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Pointwise a posteriori error estimates are derived for linear second-order elliptic problems over general polygonal domains in 2D. The analysis carries over regardless of convexity, accounting even for slit domains, and applies to highly graded unstructured meshes as well. A key ingredient is a new asymptotic a priori estimate for regularized Green's functions. The estimators lead always to upper bounds for the error in the maximum norm, along with lower bounds under very mild regularity and nondegeneracy assumptions. The effect of both point and line singularities is examined. Three popular local estimators for the energy norm are shown to be equivalent, when suitably interpreted, to those introduced here.


References [Enhancements On Off] (What's this?)

  • [1] I. Babuška, R. Durán, and R. Rodriguez, Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements, SIAM J. Numer. Anal. 29 (1992), 947-964. MR 1173179 (93d:65096)
  • [2] I. Babuška and A. Miller, A feedback finite element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator, Comput. Methods. Appl. Mech. Engrg. 61 (1987), 1-40. MR 880421 (88d:73036)
  • [3] I. Babuška and C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), 736-754. MR 0483395 (58:3400)
  • [4] I. Babuška , O.C. Zienkiewicz, J. Gago, and E.R. de A. Oliveira, Accuracy estimates and adaptive refinements in finite element computations, Wiley, New York, 1986. MR 879442 (87j:65004)
  • [5] R.E. Bank, PLTMG: A software package for solving elliptic partial differential equations, users' guide 6.0 , Frontiers in Applied Mathematics, SIAM, Philadelphia, PA, 1990. MR 1052151
  • [6] R.E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985), 283-301. MR 777265 (86g:65207)
  • [7] F. Brezzi, J. Douglas Jr., and L.D. Marini, Two families of mixed finite element methods for second order elliptic problems, Numer. Math. 47 (1985), 217-235. MR 799685 (87g:65133)
  • [8] P.G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
  • [9] M. Dauge, Elliptic boundary value problems on corner domains: smoothness and asymptotics of solutions, Lecture Notes in Math., vol. 1341, Springer-Verlag, Berlin and New York, 1988. MR 961439 (91a:35078)
  • [10] K. Eriksson, Adaptive finite element methods based on optimal error estimates for linear elliptic problems, Preprint 1987-02, Chalmers University of Technology, Göteborg, 1987.
  • [11] -, Error estimates for the $ H_0^1(\Omega )$ and $ {L^2}(\Omega )$ projections onto finite element spaces under weak regularity assumptions, Preprint, Chalmers University of Technology, Göteborg, 1988.
  • [12] -, Basic error estimates for adaptive finite element methods for linear elliptic and parabolic problems, Numerical Methods and Applications (Sofia, 1989), pp. 141-147, Bulgar. Acad. Sci., Sofia, 1989. MR 1027618
  • [13] K. Eriksson and C. Johnson, An adaptive finite element method for linear elliptic problems, Math. Comp. 50 (1988), 361-383. MR 929542 (89c:65119)
  • [14] -, Adaptive finite element methods for parabolic problems I: a linear model problem, SIAM J. Numer. Anal. 28 (1991), 43-77. MR 1083324 (91m:65274)
  • [15] L. Gastaldi and R.H. Nochetto, Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations, RAIRO Modél. Math. Anal. Numér. 23 (1989), 103-128. MR 1015921 (91b:65125)
  • [16] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin and New York, 1983. MR 737190 (86c:35035)
  • [17] E. Giusti, Minimal surfaces and functions of bounded variation, Birkhäuser, Boston, 1984. MR 775682 (87a:58041)
  • [18] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman, Boston, 1985. MR 775683 (86m:35044)
  • [19] C. Johnson, Adaptive finite element methods for diffusion and convection problems, Comp. Methods Appl. Mech. Engrg. 82 (1990), 301-322. MR 1077659 (91k:65134)
  • [20] R.H. Nochetto, Removing the saturation assumption in a posteriori error analysis, Istit. Lombardo Accad. Sci. Lett. Rend. A (to appear). MR 1284844 (95c:65187)
  • [21] R.H. Nochetto, M. Paolini, and C. Verdi, An adaptive finite element method for two-phase Stefan problems in two space dimensions. Part I: stability and error estimates, Math. Comp. 57 (1991), 73-108; Supplement, Math. Comp. 57 (1991), S1-S11. MR 1079028 (92a:65322)
  • [22] R. Rodriguez, Some remarks on Zienkiewicz-Zhu estimator, Numer. Methods Partial Differential Equations (to appear). MR 1290948 (95e:65103)
  • [23] A. Schatz and L. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains. Part 1, Math. Comp. 32 (1978), 73-109; Part 2, Refinements, Math. Comp. 33 (1979), 73-109. MR 0502065 (58:19233a)
  • [24] R. Verfürth, A posteriori error estimators for the Stokes equations, Numer. Math. 55 (1989), 309-325. MR 993474 (90d:65187)
  • [25] O.C. Zienkiewicz and J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg. 24 (1987), 337-357. MR 875306 (87m:73055)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N15, 65N50

Retrieve articles in all journals with MSC: 65N15, 65N50


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1995-1270622-3
Keywords: A posteriori error estimates, maximum norm, equivalence, point and line singularities
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society