Numerical evaluation of surface integrals in three dimensions

Author:
David Chien

Journal:
Math. Comp. **64** (1995), 727-743

MSC:
Primary 65D30

DOI:
https://doi.org/10.1090/S0025-5718-1995-1270615-6

MathSciNet review:
1270615

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we consider the evaluation of surface integrals over piecewise smooth surfaces in three dimensions. The method consists in first replacing a parametrization for the surface and the integrand function by piecewise polynomial interpolants of them, and second, using a numerical integration scheme for the resulting integral. The order of convergence is higher than would be expected based on the underlying interpolation theory.

**[1]**Kendall E. Atkinson,*Piecewise polynomial collocation for integral equations on surfaces in three dimensions*, J. Integral Equations**9**(1985), no. 1, suppl., 25–48. MR**792418****[2]**-,*An empirical study of the numerical solution of integral equations on surfaces in*, Reports on Computational Mathematics, #1, Dept. of Mathematics, University of Iowa, Iowa City, IA, 1989.**[3]**-,*User's guide to a boundary element package for solving integral equations on piecewise smooth surfaces*, Reports on Computational Mathematics, #44, Dept. of Mathematics, University of Iowa, Iowa City, IA, 1993.**[4]**K. Atkinson and E. Venturino,*Numerical evaluation of line integrals*, SIAM J. Numer. Anal.**30**(1993), no. 3, 882–888. MR**1220659**, https://doi.org/10.1137/0730046**[5]**D. Chien,*Piecewise polynomial collocation for integral equations on surfaces in three dimensions*, Ph.D. thesis, Univ. of Iowa, Iowa City, IA, 1991.**[6]**N. Günter,*Potential theory and its applications to basic problems of mathematical physics*, Ungar, New York, 1967.**[7]**A. H. Stroud,*Approximate calculation of multiple integrals*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. Prentice-Hall Series in Automatic Computation. MR**0327006****[8]**Kurt Georg and Johannes Tausch,*Some error estimates for the numerical approximation of surface integrals*, Math. Comp.**62**(1994), no. 206, 755–763. MR**1219704**, https://doi.org/10.1090/S0025-5718-1994-1219704-1**[9]**J. Lyness,*Quadrature over a simplex*, SIAM J. Numer. Anal.**15**(1978), 122-133 and 870-887.**[10]**J. N. Lyness,*Quadrature over curved surfaces by extrapolation*, Math. Comp.**63**(1994), no. 208, 727–740. MR**1257576**, https://doi.org/10.1090/S0025-5718-1994-1257576-X**[11]**C. Schwab and W. L. Wendland,*On numerical cubatures of singular surface integrals in boundary element methods*, Numer. Math.**62**(1992), no. 3, 343–369. MR**1169009**, https://doi.org/10.1007/BF01396234**[12]**P. Verlinden and R. Cools,*Proof of a conjectured asymptotic expansion for the approximation of surface integrals*, Math. Comp.**63**(1994), no. 208, 717–725. MR**1257581**, https://doi.org/10.1090/S0025-5718-1994-1257581-3**[13]**Y. Yang and K. Atkinson,*Numerical integration for multivariable functions with point singularities*, Reports on Computational Mathematics, #41, Dept of Mathematics, University of Iowa, Iowa City, IA, 1993.

Retrieve articles in *Mathematics of Computation*
with MSC:
65D30

Retrieve articles in all journals with MSC: 65D30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1995-1270615-6

Article copyright:
© Copyright 1995
American Mathematical Society