The sharpness of Kuznetsov's -error estimate for monotone difference schemes

Authors:
Tao Tang and Zhen Huan Teng

Journal:
Math. Comp. **64** (1995), 581-589

MSC:
Primary 65M25; Secondary 65M15

DOI:
https://doi.org/10.1090/S0025-5718-1995-1270625-9

MathSciNet review:
1270625

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We derive a lower error bound for monotone difference schemes to the solution of the linear advection equation with BV initial data. A rigorous analysis shows that for any monotone difference scheme the lower -error bound is , where is the spatial stepsize.

**[1]**P. Brenner, V. Thomée, and L. B. Wahlbin,*Besov spaces and applications to difference methods for initial value problems*(A. Dold and B. Eckmann, eds.), Lecture Notes in Math., vol. 434, Springer-Verlag, Berlin and New York, 1975. MR**0461121 (57:1106)****[2]**M. Crandall and A. Majda,*Monotone difference approximations to scalar conservation laws*, Math. Comp.**34**(1980), 1-21. MR**551288 (81b:65079)****[3]**E. Engquist and S. Osher,*One-sided difference approximation for nonlinear conservation laws*, Math. Comp.**36**(1981), 321-351. MR**606500 (82c:65056)****[4]**A. Harten, J. M. Hyman, and P. D. Lax,*On finite difference approximations and entropy conditions for shocks*, Comm. Pure Appl. Math.**29**(1976), 297-322. MR**0413526 (54:1640)****[5]**G. W. Hedstrom,*The rate of convergence of some difference schemes*, SIAM J. Numer. Anal.**5**(1968), 363-406. MR**0230489 (37:6051)****[6]**N. N. Kuznetsov,*On stable methods for solving non-linear first order partial differential equations in the class of discontinuous functions*, Topics in Numerical Analysis III (Proc. Roy. Irish Acad. Conf.) (J. J. H. Miller, ed.), Academic Press, London, 1977, pp. 183-197. MR**0657786 (58:31874)****[7]**M. M. Loève,*Probability theory*I, Graduate Texts in Math., vol. 45, Springer-Verlag, 1977, pp. 22-23. MR**0651017 (58:31324a)****[8]**R. Sanders,*On convergence of monotone finite difference schemes with variable spatial differencing*, Math. Comp.**40**(1983), 91-106. MR**679435 (84a:65075)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65M25,
65M15

Retrieve articles in all journals with MSC: 65M25, 65M15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1995-1270625-9

Keywords:
Monotone difference scheme,
error estimate,
lower error bound

Article copyright:
© Copyright 1995
American Mathematical Society