Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A numerical Liapunov-Schmidt method with applications to Hopf bifurcation on a square


Authors: Peter Ashwin, Klaus Böhmer and Zhen Mei
Journal: Math. Comp. 64 (1995), 649-670, S19
MSC: Primary 65J15; Secondary 47H15, 47N20, 65N99
DOI: https://doi.org/10.1090/S0025-5718-1995-1284661-X
MathSciNet review: 1284661
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss an iterative method for calculating the reduced bifurcation equation of the Liapunov-Schmidt method and its numerical approximation. Using appropriate genericity assumptions (with symmetry), we derive a Taylor series for the reduced equation, where the bifurcation behavior is determined by its numerical approximation at a finite order of truncation. This method is used to calculate reduced equations at Hopf bifurcation of the two-dimensional Brusselator equations on a square with Neumann and Dirichlet boundary conditions. We examine several Hopf bifurcations within the three-parameter space. There are regions where we observe direct bifurcation to branches of periodic solutions with submaximal symmetry.


References [Enhancements On Off] (What's this?)

  • [1] E. L. Allgower, P. Ashwin, K. Böhmer, and Z. Mei, Liapunov-Schmidt reduction for a bifurcation problem with periodic boundary conditions on a square domain, Exploiting Symmetry in Applied and Numerical Analysis (E. L. Allgower, K. Georg, R. Miranda, eds.), Lectures in Appl. Math., vol. 29, Amer. Math. Soc., Providence, RI, 1993, pp. 11-22. MR 1247711 (94j:35020)
  • [2] E. L. Allgower and K. Böhmer, Resolving singular nonlinear equations, Rocky Mountain J. Math. 18 (1988), 225-268. MR 951936 (89h:58040)
  • [3] E. L. Allgower, K. Böhmer, K. Georg, and R. Miranda, Exploiting symmetry in boundary element methods, SIAM J. Numer. Anal. 29 (1992), 534-552. MR 1154282 (93b:65184)
  • [4] E. L. Allgower, K. Böhmer, and Z. Mei On a problem decomposition for semi linear nearly symmetric elliptic problems, Parallel Algorithms for Partial Differential Equations (W. Hackbusch, ed.), Vieweg Verlag, Braunschweig, 1991, pp. 1-17.
  • [5] -, A complete bifurcation scenario for the 2d-nonlinear Laplacian with Neumann boundary conditions on the unit square, Bifurcations and Chaos: Analysis, Algorithms, Applications (R. Seydel, F. W. Schneider, T. Küpper, and H. Troger, eds.), Birkhäuser Verlag, Basel, 1991, pp. 1-18.
  • [6] P. Ashwin, High corank mode interactions on a rectangle, Bifurcation and Symmetry (E. L. Allgower, K. Böhmer, and M. Golubitsky, eds), Internat. Ser. Numer. Anal., vol. 104, Birkhäuser, Basel, 1992, pp. 23-33. MR 1248603 (94j:35021)
  • [7] -, Ph.D. thesis, Math. Institute, University of Warwick, 1991.
  • [8] P. Ashwin and Z. Mei, Normal form for Hopf bifurcation of partial differential equations on the square, submitted to Nonlinearity, 1994. MR 1355039 (97e:35016)
  • [9] P. Ashwin, K. Böhmer, and Z. Mei, A numerical Liapunov-Schmidt method for finitely determined problems, Exploiting Symmetry in Applied and Numerical Analysis (E. L. Allgower, K. Georg, and R. Miranda, eds.), Lectures in Appl. Math., vol. 29, Amer. Math. Soc., Providence, RI, 1993, pp. 49-69. MR 1247714 (94i:58035)
  • [10] P. Ashwin and Z. Mei, Liapunov-Schmidt reduction at Hopf bifurcation of the Brusselator equations on a square, University of Warwick, 1992, preprint.
  • [11] K. Böhmer, Developing a numerical Lyapunov-Schmidt method, Bericht zum Fachbereich Mathematik der Philipps-Universität Marburg, 1990. MR 1066276 (92a:65189)
  • [12] -, On a numerical Lyapunov-Schmidt method for operator equations, Computing 53 (1993), 237-269.
  • [13] K. Böhmer and Z. Mei, On a numerical Lyapunov-Schmidt method, Computational Solutions of Nonlinear Systems of Equations (E. L. Allgower and K. Georg, eds.), Lectures in Appl. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1990, pp. 79-98. MR 1066276 (92a:65189)
  • [14] F. Brezzi, J. Rappaz, and P. A. Raviart, Finite dimensional approximation of nonlinear problems, Part I: Branches of nonsingular solutions, Numer. Math. 36 (1980), 1-25; Part II: Limit points, Numer. Math. 37 (1981), 1-28; Part III: Simple bifurcation points, Numer. Math. 38 (1981), 1-30. MR 595803 (83f:65089a)
  • [15] J. D. Crawford, Normal forms for driven surface waves, Physica D 52 (1991), 429-457. MR 1129005 (93a:76012)
  • [16] M. Dellnitz, Computational bifurcation of periodic solutions in systems with symmetry, IMA J. Numer. Anal. 12 (1992), 429-455. MR 1181259 (93g:58104)
  • [17] C. C. Douglas and J. Mandel, An abstract theory for the domain reduction method, Computing 43 (1992), 75-96. MR 1162385 (93b:65162)
  • [18] H. Esser, Stabilitätsungleichungen für Diskretisierungen von Randwertaufgaben gewöhnlicher Differentialgleichungen, Numer. Math. 28 (1977), 69-100. MR 0461926 (57:1908)
  • [19] E. Gekeler, On trigonometric collocation in Hopf bifurcation, Bifurcation and Symmetry (E. L. Allgower, K. Böhmer, and M. Golubitsky, eds.), Internat. Ser. Numer. Anal., vol. 104, Birkhäuser, Basel, 1992, pp. 147-156. MR 1248613 (95a:34019)
  • [20] K. Georg and R. Miranda, Exploiting symmetry in solving linear equations, Bifurcation and Symmetry (E. L. Allgower, K. Böhmer, and M. Golubitsky, eds.), Internat. Ser. Numer. Anal., vol. 104, Birkhäuser, Basel, 1992, pp. 157-168. MR 1248614 (94j:65039)
  • [21] M. Golubitsky and D. Schaeffer, Groups and singularities in bifurcation theory, Vol. 1, Appl. Math. Sci., vol. 51, Springer, New York, 1986.
  • [22] M. Golubitsky and I. Stewart, Hopf bifurcation in the presence of symmetry, Arch. Rational Mech. Anal. 87 (1985), 107-165. MR 765596 (86g:58034)
  • [23] M. Golubitsky, I.N Stewart, and D. Schaeffer, Groups and singularities in bifurcation theory, Vol. 2, Appl. Math. Sci., vol. 69, Springer, New York, 1988.
  • [24] M.G.M. Gomes, Steady-state mode interactions in rectangular domains, M.Sc. thesis, Math. Institute, University of Warwick, 1989.
  • [25] R.D. Grigorieff, Zur Theorie linearer approximationsregulärer Operatoren, I und II, Math. Nachr. 55 (1973), 233-249 and 251-263. MR 0348533 (50:1031)
  • [26] W. Hackbusch, Theorie und Numerik elliptischer Differentialgleichungen, Teubner Verlag, Stuttgart, 1986. MR 1600003 (98j:35002)
  • [27] J. Martinet, Singularities of smooth functions and maps, LMS lecture notes 58, CUP, 1982. MR 671585 (83i:58018)
  • [28] Z. Mei, Path following around Corank-2 bifurcation points of a semi-linear elliptic problem with symmetry, Computing 47 (1991), 69-85. MR 1137075 (93b:58165)
  • [29] I. Prigogine and P. Glansdorff, Structure, stabilité et fluctuations, Masson, Paris, 1971.
  • [30] H. J. Reinhard, Analysis of approximation methods for differential and integral equations, Springer-Verlag, Berlin, Heidelberg, Tokyo, New York, 1985.
  • [31] E. Stiefel and A. Fässler, Gruppentheoretische Methoden und ihre Anwendung, Teubner Verlag, Stuttgart, 1979. MR 544189 (81m:20025)
  • [32] F. Stummel, Diskrete Konvergenz linearer Operatoren, I, Math. Ann. 190 (1970), 45-92; II, Math. Z. 120 (1971), 231-264; III, Proc. Oberwolfach 1971, Internat. Ser. Numer. Anal., vol. 20, Birkhäuser, Basel, 1972, pp. 196-216. MR 0291870 (45:959)
  • [33] -, Stability and discrete convergence of differentiable mappings, Rev. Roumaine Math. Pures Appl. 21 (1976), 63-96. MR 0411165 (53:14904)
  • [34] J.W. Swift, Hopf bifurcation with the symmetry of the square, Nonlinearity 1 (1988), 333-377. MR 937006 (89e:58085)
  • [35] G. Vainikko, Funktionsanalysis der Diskretisierungsmethoden, Teubner Texte zur Mathematik, Teubner, Leipzig, 1976. MR 0468159 (57:7997)
  • [36] A. Vanderbauwhede, Local bifurcation and symmetry, Res. Notes in Math., vol. 75, Pitman, Boston, 1982. MR 697724 (85f:58026)
  • [1] P. Ashwin and Z. Mei: Liapunov-Schmidt reduction at Hopf bifurcation of the Brusselator equations on a square. Preprint, University of Warwick, 1992.
  • [2] Z. Mei: Path following around Corank-2 bifurcation points of a semi-linear elliptic problem with symmetry, Computing 47:69-85, 1991. MR 1137075 (93b:58165)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65J15, 47H15, 47N20, 65N99

Retrieve articles in all journals with MSC: 65J15, 47H15, 47N20, 65N99


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1995-1284661-X
Keywords: Hopf bifurcation, steady state bifurcation, Liapunov-Schmidt method, finite determinacy, equivariant operator
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society