Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On a class of elliptic curves with rank at most two


Author: H. E. Rose
Journal: Math. Comp. 64 (1995), 1251-1265, S27
MSC: Primary 11G40; Secondary 11G05, 11Y50
DOI: https://doi.org/10.1090/S0025-5718-1995-1297476-3
MathSciNet review: 1297476
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we consider the elliptic curves $ {y^2} = {x^3} + px$ defined over $ \mathbb{Q}$ for primes p satisfying $ p \equiv 1\; \pmod 8$, and review some of their properties. We then compute and list (in the supplement) their ranks, and give, when the rank is positive, the generators of the group of rational points and Mordell-Weil lattice invariant $ \tau $ for all primes $ p < 50000$ of the form $ {m^2} + 64{n^2}$.


References [Enhancements On Off] (What's this?)

  • [1] A. Bremner and J. W. S. Cassels, On the equation $ {Y^2} = X({X^2} + p)$, Math. Comp. 42 (1984), 257-264. MR 726003 (85f:11017)
  • [2] A. Bremner, On the equation $ {Y^2} = X({X^2} + p)$, Number Theory and Applications (R. A. Mollin, ed.), Kluwer, Dordrecht, 1989, pp. 3-23.
  • [3] J. Buhler, B. Gross, and D. Zagier, On the conjecture of Birch and Swinnerton-Dyer for a curve of rank 3, Math. Comp. 44 (1985), 473-481. MR 777279 (86g:11037)
  • [4] H. Cohen, A course in computational algebraic number theory, Springer, Berlin, 1993. MR 1228206 (94i:11105)
  • [5] L. J. Mordell, The diophantine equation $ {x^4} + m{y^4} = {z^2}$, Quart. J. Math. (2) 18 (1967), 1-6. MR 0210659 (35:1545)
  • [6] H. E. Rose, On a class of elliptic curves with rank at most two, University of Bristol preprint, 1992. MR 1297476 (95j:11059)
  • [7] K. Rubin, The one-variable main conjecture for elliptic curves with complex multiplication, L-functions and Arithmetic (J. Coates and M. J. Taylor, eds.), Cambridge Univ. Press, Cambridge, 1991. MR 1110401 (92j:11055)
  • [8] J. H. Silverman, The arithmetic of elliptic curves, Springer, New York, 1986. MR 817210 (87g:11070)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11G40, 11G05, 11Y50

Retrieve articles in all journals with MSC: 11G40, 11G05, 11Y50


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1995-1297476-3
Keywords: Elliptic curve, rank
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society