On a class of elliptic curves with rank at most two

Author:
H. E. Rose

Journal:
Math. Comp. **64** (1995), 1251-1265, S27

MSC:
Primary 11G40; Secondary 11G05, 11Y50

MathSciNet review:
1297476

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we consider the elliptic curves defined over for primes *p* satisfying , and review some of their properties. We then compute and list (in the supplement) their ranks, and give, when the rank is positive, the generators of the group of rational points and Mordell-Weil lattice invariant for all primes of the form .

**[1]**A. Bremner and J. W. S. Cassels,*On the equation 𝑌²=𝑋(𝑋²+𝑝)*, Math. Comp.**42**(1984), no. 165, 257–264. MR**726003**, 10.1090/S0025-5718-1984-0726003-4**[2]**A. Bremner,*On the equation*, Number Theory and Applications (R. A. Mollin, ed.), Kluwer, Dordrecht, 1989, pp. 3-23.**[3]**Joe P. Buhler, Benedict H. Gross, and Don B. Zagier,*On the conjecture of Birch and Swinnerton-Dyer for an elliptic curve of rank 3*, Math. Comp.**44**(1985), no. 170, 473–481. MR**777279**, 10.1090/S0025-5718-1985-0777279-X**[4]**Henri Cohen,*A course in computational algebraic number theory*, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR**1228206****[5]**L. J. Mordell,*The diophantine equation 𝑥⁴+𝑚𝑦⁴=𝑧².*, Quart. J. Math. Oxford Ser. (2)**18**(1967), 1–6. MR**0210659****[6]**H. E. Rose,*On a class of elliptic curves with rank at most two*, Math. Comp.**64**(1995), no. 211, 1251–1265, S27–S34. MR**1297476**, 10.1090/S0025-5718-1995-1297476-3**[7]**Karl Rubin,*The one-variable main conjecture for elliptic curves with complex multiplication*, 𝐿-functions and arithmetic (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 153, Cambridge Univ. Press, Cambridge, 1991, pp. 353–371. MR**1110401**, 10.1017/CBO9780511526053.015**[8]**Joseph H. Silverman,*The arithmetic of elliptic curves*, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR**817210**

Retrieve articles in *Mathematics of Computation*
with MSC:
11G40,
11G05,
11Y50

Retrieve articles in all journals with MSC: 11G40, 11G05, 11Y50

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1995-1297476-3

Keywords:
Elliptic curve,
rank

Article copyright:
© Copyright 1995
American Mathematical Society