Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



A polyhedral method for solving sparse polynomial systems

Authors: Birkett Huber and Bernd Sturmfels
Journal: Math. Comp. 64 (1995), 1541-1555
MSC: Primary 65H20; Secondary 65H10
MathSciNet review: 1297471
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A continuation method is presented for computing all isolated roots of a semimixed sparse system of polynomial equations. We introduce mixed subdivisions of Newton polytopes, and we apply them to give a new proof and algorithm for Bernstein's theorem on the expected number of roots. This results in a numerical homotopy with the optimal number of paths to be followed. In this homotopy there is one starting system for each cell of the mixed subdivision, and the roots of these starting systems are obtained by an easy combinatorial construction.

References [Enhancements On Off] (What's this?)

  • [1] E. Allgower and K. Georg, Numerical continuation methods, Springer-Verlag, New York, 1990. MR 1059455 (92a:65165)
  • [2] D. N. Bernstein, The number of roots of a system of equations, Functional Anal. Appl. 9 (1975), 1-4. MR 0435072 (55:8034)
  • [3] U. Betke, Mixed volumes of polytopes, Archiv der Mathematik 58 (1992), 388-391. MR 1152628 (93f:52012)
  • [4] L. J. Billera and B. Sturmfels, Fiber polytopes, Ann. of Math. (2) 35 (1992), 527-549. MR 1166643 (93e:52019)
  • [5] J. Canny and J. M. Rojas, An optimal condition for determining the exact number of roots of a polynomial system, Proceedings of ISSAC 91 (Bonn, Germany), ACM Press, New York, 1991, pp. 96-102.
  • [6] F. J. Drexler, A homotopy method for the calculation of zeros of zero dimensional ideals, Continuation Methods (H.G. Wacker, ed.), Academic Press, New York, 1978. MR 505422 (80f:58009)
  • [7] M. Dyer, P. Gritzmann, and A. Hufnagel, On the complexity of computing mixed volumes, Manuscript, Trier, Germany, 1994.
  • [8] W. Fulton, Introduction to toric varieties, Princeton Univ. Press, Princeton, NJ, 1993. MR 1234037 (94g:14028)
  • [9] I. M. Gel'fand, M. Kapranov, and A. Zelevinsky, Discriminants, resultants and multidimensional determinants, Birkhäuser, Boston, 1994. MR 1264417 (95e:14045)
  • [10] M. Kapranov, B. Sturmfels, and A. Zelevinsky, Chow polytopes and general resultants, Duke Math. J. 67 (1992), 189-218. MR 1174606 (93e:14062)
  • [11] C. Lee, Regular triangulations of convex polytopes, Applied Geometry and Discrete Mathematics - The Victor Klee Festschrift (P. Gritzmann and B. Sturmfels, eds.), Amer. Math. Soc. DIMACS Series 4, Providence, RI, 1991, pp. 443-456. MR 1116369 (92j:52021)
  • [12] P. McMullen and R. Schneider, Valuations on convex bodies, Convexity and its Applications (P.M. Gruber and J.M. Wills, eds.), Birkhäuser, Basel, 1983. MR 731112 (85e:52001)
  • [13] A. Morgan and A. Sommese, A homotopy for solving general polynomial systems that respects m-homogeneous structures, Appl. Math. Comput. 24 (1987), 101-113. MR 914806 (88j:65110)
  • [14] P. Pedersen and B. Sturmfels, Product formulas for resultants and Chow forms, Math. Z. 214 (1993), 377-396. MR 1245200 (94m:14068)
  • [15] I. R. Shafarevich, Basic algebraic geometry, Springer-Verlag, New York, 1977. MR 0447223 (56:5538)
  • [16] B. Sturmfels, On the Newton polytope of the resultant, J. Algebraic Combin. 3 (1994), 207-236. MR 1268576 (95j:52024)
  • [17] J. Verschelde, P. Verlinden, and R. Cools, Homotopies exploiting Newton polytopes for solving sparse polynomial systems, SIAM J. Numer. Anal. 31 (1994), 915-930. MR 1275120 (94m:65084)
  • [18] R. J. Walker, Algebraic curves, 2nd ed., Springer-Verlag, New York, 1978. MR 513824 (80c:14001)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65H20, 65H10

Retrieve articles in all journals with MSC: 65H20, 65H10

Additional Information

Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society