The coefficients of primitive polynomials over finite fields
Author:
Wen Bao Han
Journal:
Math. Comp. 65 (1996), 331340
MSC (1991):
Primary 11T06
MathSciNet review:
1320895
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: For , we prove that there always exists a primitive polynomial of degree over a finite field with the first and second coefficients prescribed in advance.
 1
Stephen
D. Cohen, Primitive elements and polynomials with arbitrary
trace, Discrete Math. 83 (1990), no. 1,
1–7. MR
1065680 (91h:11143), http://dx.doi.org/10.1016/0012365X(90)902154
 2
Stephen
D. Cohen, Primitive elements and polynomials: existence
results, Finite fields, coding theory, and advances in communications
and computing (Las Vegas, NV, 1991) Lecture Notes in Pure and Appl.
Math., vol. 141, Dekker, New York, 1993, pp. 43–55. MR 1199821
(93k:11113)
 3
H.
Davenport, Bases for finite fields, J. London Math. Soc.
43 (1968), 21–39. MR 0227144
(37 #2729)
 4
W.B. Han, Primitive roots and linearized polynomials, Adv. in Math. (China) 22 (1994), 460462 CMP 1994:8.
 5
Tom
Hansen and Gary
L. Mullen, Primitive polynomials over finite
fields, Math. Comp. 59
(1992), no. 200, 639–643,
S47–S50. MR 1134730
(93a:11101), http://dx.doi.org/10.1090/S00255718199211347307
 6
Dieter
Jungnickel and Scott
A. Vanstone, On primitive polynomials over finite fields, J.
Algebra 124 (1989), no. 2, 337–353. MR 1011600
(90k:11164), http://dx.doi.org/10.1016/00218693(89)901361
 7
Rudolf
Lidl and Harald
Niederreiter, Finite fields, Encyclopedia of Mathematics and
its Applications, vol. 20, AddisonWesley Publishing Company, Advanced
Book Program, Reading, MA, 1983. With a foreword by P. M. Cohn. MR 746963
(86c:11106)
 8
H.
W. Lenstra Jr. and R.
J. Schoof, Primitive normal bases for finite
fields, Math. Comp. 48
(1987), no. 177, 217–231. MR 866111
(88c:11076), http://dx.doi.org/10.1090/S00255718198708661113
 9
Oscar
Moreno, On the existence of a primitive quadratic of trace 1 over
𝐺𝐹(𝑝^{𝑚}), J. Combin. Theory Ser. A
51 (1989), no. 1, 104–110. MR 993652
(90b:11133), http://dx.doi.org/10.1016/00973165(89)900800
 10
Wolfgang
M. Schmidt, Equations over finite fields. An elementary
approach, Lecture Notes in Mathematics, Vol. 536, SpringerVerlag,
BerlinNew York, 1976. MR 0429733
(55 #2744)
 11
Q. Sun and W.B. Han, The absolute trace function and primitive roots in finite fields (in Chinese), Chinese Ann. Math. Ser. A 11 (1990), 202205.
 12
, Improvement of Weil exponential sums and its application, preprint.
 1
 S. D. Cohen, Primitive elements and polynomials with arbitrary traces, Discrete Math. (2) 83 (1990), 17 MR 91h:11143.
 2
 , Primitive elements and polynomials: existence results, Lecture Notes in Pure and Appl. Math., vol. 141, edited by G. L. Mullen and P. J. Shiue, Marcel Dekker, New York, 1992, pp. 4355 MR 93k:11113.
 3
 H. Davenport, Bases for finite fields, J. London Math. Soc. 43 (1968), 2139 MR 37:2729.
 4
 W.B. Han, Primitive roots and linearized polynomials, Adv. in Math. (China) 22 (1994), 460462 CMP 1994:8.
 5
 T. Hansen and G. L. Mullen, Primitive polynomials over finite fields Math. Comp. 59 (1992), 639643 MR 93a:11101.
 6
 D. Jungnickel and S. A. Vanstone, On primitive polynomials over finite fields, J. Algebra 124 (1989), 337353 MR 90k:11164.
 7
 R. Lidl and H. Niederreiter, Finite fields, AddisonWesley, Reading, MA, 1983 MR 86c:11106.
 8
 H. W. Lenstra and R. J. Schoof, Primitive normal bases for finite fields, Math. Comp. 48 (1987), 217232 MR 88c:11076.
 9
 O. Moreno, On the existence of a primitive quadratic of trace 1 over , J. Combin. Theory Ser. A 51 (1989), 104110 MR 90b:11133.
 10
 W. M. Schmidt, Equations over finite fields; an elementary approach, Lecture Notes in Math., vol. 536, SpringerVerlag, Berlin and New York, 1976 MR 55:2744.
 11
 Q. Sun and W.B. Han, The absolute trace function and primitive roots in finite fields (in Chinese), Chinese Ann. Math. Ser. A 11 (1990), 202205.
 12
 , Improvement of Weil exponential sums and its application, preprint.
Similar Articles
Retrieve articles in Mathematics of Computation of the American Mathematical Society
with MSC (1991):
11T06
Retrieve articles in all journals
with MSC (1991):
11T06
Additional Information
Wen Bao Han
Affiliation:
Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, The People’s Republic of China
DOI:
http://dx.doi.org/10.1090/S0025571896006631
PII:
S 00255718(96)006631
Keywords:
Finite field,
primitive polynomial
Received by editor(s):
January 12, 1994
Received by editor(s) in revised form:
June 2, 1994, and December 5, 1994
Article copyright:
© Copyright 1996
American Mathematical Society
