Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On a nonlinear congruential
pseudorandom number generator


Authors: Takashi Kato, Li-Ming Wu and Niro Yanagihara
Journal: Math. Comp. 65 (1996), 227-233
MSC (1991): Primary 65C10; Secondary 11K45
DOI: https://doi.org/10.1090/S0025-5718-96-00694-1
MathSciNet review: 1325868
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A nonlinear congruential pseudorandom number generator with modulus $M = 2^w$ is proposed, which may be viewed to comprise both linear as well as inversive congruential generators. The condition for it to generate sequences of maximal period length is obtained. It is akin to the inversive one and bears a remarkable resemblance to the latter.


References [Enhancements On Off] (What's this?)

  • 1 J. Eichenauer-Herrmann, Inversive congruential pseudorandom numbers avoid the planes, Math. Comp. 56 (1991), 297--301, MR 91k:65021.
  • 2 ------, Statistical independence of a new class of inversive congruential pseudorandom numbers, Math. Comp. 60 (1993), 375--384, MR 93d:65011.
  • 3 ------, On generalized inversive congruential pseudorandom numbers, Math. Comp. 63 (1994), 293--299, MR 94k:11088.
  • 4 J. Eichenauer-Herrmann, H. Grothe, H. Niederreiter, and A. Topuzoglu, On the lattice structure of a nonlinear generator with modulus $2^{\alpha } $, J. Comput. Appl. Math. 31 (1990), 81--85, MR 91j:65012.
  • 5 J. Eichenauer, J. Lehn, and A. Topuzoglu, A nonlinear congruential pseudorandom number generator with power of two modulus, Math. Comp. 51 (1988), 757--759, MR 89i:65007.
  • 6 J. Eichenauer-Herrmann and H. Niederreiter, Lower bounds for the discrepancy of inversive congruential pseudorandom numbers with power of two modulus, Math. Comp. 58 (1992), 775--779, MR 92i:65018.
  • 7 T. Kimura, On the iteration of analytic functions, Funkcial. Ekvac. 14 (1971), 197--238, MR 46:2019.
  • 8 ------, On meromorphic solutions of the difference equation $ y(x+1) = y(x) + 1 + \lambda /y(x)$, Symposium on Ordinary Differential Equations, Lecture Notes in Math., vol. 312, Springer-Verlag, Berlin and New York, 1973, pp. (74--86), MR 53:3527.
  • 9 D. E. Knuth, The art of computer programming, Vol. 2, Seminumerical Algorithms, 2nd ed., Addison-Wesley, Reading, MA, 1981, MR 83i:68003.
  • 10 H. Niederreiter, The serial test for congruential pseudorandom numbers generated by inversions, Math. Comp. 52 (1989), 135--144, MR 90e:65008.
  • 11 ------, Recent trends in random number and random vector generation, Ann. Oper. Res. 31 (1991), 323--345, MR 92h:65010.
  • 12 ------, Random number generation and quasi-Monte Carlo methods, SIAM, Philadelphia, PA, 1992, MR 93h:65008.
  • 13 K. Takano, On the hypertranscendency of solutions of a difference equation of Kimura, Funkcial. Ekvac. 16 (1973), 241--254, MR 50:5074.
  • 14 N. Yanagihara, Meromorphic solutions of the difference equation $y(x+1) = y(x)+1+ \lambda /y(x)$. I, Funkcial. Ekvac. 21 (1978), 97--104, MR 80a:30021.
  • 15 ------, Meromorphic solutions of the difference equation $y(x+1) = y(x)+1+ \lambda /y(x)$. II, Funkcial. Ekvac. 21 (1978), 223--240, MR 81h:30028.

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 65C10, 11K45

Retrieve articles in all journals with MSC (1991): 65C10, 11K45


Additional Information

Takashi Kato
Affiliation: address Department of Mathematics, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba City, 263 JAPAN
Email: yanaba@math.s.chiba-u.ac.jp

Li-Ming Wu
Affiliation: address Department of Mathematics, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba City, 263 JAPAN

Niro Yanagihara
Affiliation: address Department of Mathematics, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba City, 263 JAPAN

DOI: https://doi.org/10.1090/S0025-5718-96-00694-1
Keywords: Pseudorandom number, maximal period length, nonlinear congruential generator, power of two modulus
Received by editor(s): October 7, 1994
Received by editor(s) in revised form: February 12, 1995
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society