Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A priori error estimates for numerical
methods for scalar conservation laws.
Part I: The general approach


Authors: Bernardo Cockburn and Pierre-Alain Gremaud
Journal: Math. Comp. 65 (1996), 533-573
MSC (1991): Primary 65M60, 65N30, 35L65
DOI: https://doi.org/10.1090/S0025-5718-96-00701-6
MathSciNet review: 1333308
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we construct a general theory of a priori error estimates for scalar conservation laws by suitably modifying the original Kuznetsov approximation theory. As a first application of this general technique, we show that error estimates for conservation laws can be obtained without having to use explicitly any regularity properties of the approximate solution. Thus, we obtain optimal error estimates for the Engquist-Osher scheme without using the fact (i) that the solution is uniformly bounded, (ii) that the scheme is total variation diminishing, and (iii) that the discrete semigroup associated with the scheme has the $\mathrm{L}^{1}$-contraction property, which guarantees an upper bound for the modulus of continuity in time of the approximate solution.


References [Enhancements On Off] (What's this?)

  • 1. B. Cockburn, Quasimonotone schemes for scalar conservation laws, I, SIAM J. Numer. Anal. 26 (1989), 1325--1341. MR 91b:65106
  • 2. ------, Quasimonotone schemes for scalar conservation laws, II, SIAM J. Numer. Anal. 27 (1990), 247--258. MR 91b:65107
  • 3. ------, Quasimonotone schemes for scalar conservation laws, III, SIAM J. Numer. Anal. 27 (1990), 259--276. MR 91b:65107
  • 4. B. Cockburn, F. Coquel, and P. LeFloch, Convergence of the finite volume method for multidimensional conservation laws, SIAM J. Numer. Anal. 32 (1995), 687--705.
  • 5. ------, An error estimate for finite volume methods for conservations laws, Math. Comp. 64 (1994), 77-103. MR 95d:65078
  • 6. B. Cockburn and H. Gau, A posteriori error estimates for general numerical schemes for conservations laws, Mat. Apl. Comput. 14 (1995), 37--47.
  • 7. B. Cockburn and P.-A. Gremaud, An error estimate for finite element methods for conservations laws, University of Minnesota Supercomputer Institute Research Report 93-128, SIAM J. Numer. Anal. (to appear).
  • 8. F. Coquel and Ph. Le Floch, Convergence of finite difference schemes for conservation laws in several space dimensions: the corrected antidiffusive flux approach, Math. Comp. 57 (1991), 169--210. MR 91m:65229
  • 9. R.J. DiPerna, Measure-valued solutions to conservations laws, Arch. Rational Mech. Anal. 88 (1985), 223-270. MR 86g:35121
  • 10. B. Engquist and S. Osher, One-sided difference approximations for nonlinear conservation laws, Math. Comp. 36 (1981), 321--351. MR 82c:65056
  • 11. T. Geveci, The significance of the stability of difference schemes in different $l^{p}$-spaces, SIAM Rev. 24 (1982), 413--426. MR 84b:65089
  • 12. A. Harten, J. M. Hyman and P. Lax, On finite difference approximations and entropy conditions for shocks, Comm. Pure Appl. Math. 29 (1976), 297-322. MR 54:1640
  • 13. S.N. Kröner and M. Rokyta, Convergence of upwind finite volume methods for scalar conservation laws in two dimensions, SIAM J. Numer. Anal. 31 (1994), 324--343. MR 95e:65085
  • 14. S.N. Kru\v{z}kov, First order quasilinear equations in several independent variables, Math. USSR Sbornik 10 (1970), 217--243. MR 42:2159
  • 15. N.N. Kuznetsov, Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation, USSR Comput. Math. and Math. Phys. 16 (1976), 105--119. MR 58:3510
  • 16. B. J. Lucier, A stable adaptive scheme for hyperbolic conservation laws, SIAM J. Numer. Anal. 22 (1985), 180-203. MR 86d:65123
  • 17. ------, Error bounds for the methods of Glimm, Godunov and LeVeque, SIAM J. Numer. Anal. 22 (1985), 1074-1081. MR 88a:65104
  • 18. ------, On nonlocal monotone difference schemes for scalar conservation laws, Math. Comp. 47 (1986), 19-36. MR 87j:65110
  • 19. ------, A moving mesh numerical method for hyperbolic conservation laws, Math. Comp. 46 (1986), 59-69. MR 87m:65141
  • 20. S. Osher, Riemann solvers, the entropy condition, and difference approximations, SIAM J. Numer. Anal. 21 (1984), 217--235. MR 86d:65119
  • 21. B. Perthame and R. Sanders, The Neumann problem for nonlinear second-order singular perturbation problems, SIAM J. Math. Anal. 19 (1988), 295--311. MR 89d:35012
  • 22. R. Sanders, On convergence of monotone finite difference schemes with variable spatial differencing, Math. Comp. 40 (1983), 91--106. MR 84a:65075
  • 23. A. Szepessy, Convergence of a shock-capturing streamline diffusion finite element method for scalar conservation laws in two space dimensions, Math. Comp. 53 (1989), 527--545. MR 90h:65156
  • 24. ------, Convergence of a streamline diffusion finite element method for a conservation law with boundary conditions, (RAIRO) Model. Math. Anal. Numer. 25 (1991), 749-783. MR 92g:65115
  • 25. E. Tadmor and T. Tassa, On the piecewise smoothness of entropy solutions to scalar conservation laws, Comm. Partial Differential Equations 18 (1993), 1631--1652. MR 94g:35144
  • 26. J.-P. Vila, Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws, Model. Math. Anal. Numer. 28 (1994), 267--295. CMP 94:12
  • 27. A. I. Vol$'$pert and S. I. Hudjaev, Cauchy's problem for degenerate second order quasilinear parabolic equations, Math. USSR Sbornik 7 (1969), 365--387. MR 41:8828

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 65M60, 65N30, 35L65

Retrieve articles in all journals with MSC (1991): 65M60, 65N30, 35L65


Additional Information

Bernardo Cockburn
Affiliation: School of Mathematics, University of Minnesota, 127 Vincent Hall, Minneapolis, Minnesota 55455
Email: cockburn@math.umn.edu

Pierre-Alain Gremaud
Affiliation: Department of Mathematics, North Carolina State University, Box 8205, Raleigh, North Carolina 27695-8205
Email: gremaud@dali.math.ncsu.edu

DOI: https://doi.org/10.1090/S0025-5718-96-00701-6
Keywords: A priori error estimates, monotone schemes, conservation laws
Received by editor(s): August 22, 1994
Received by editor(s) in revised form: February 22, 1995
Additional Notes: First author partially supported by the National Science Foundation (Grant DMS-9407952) and by the University of Minnesota Supercomputer Institute.
Second author partially supported by the University of Minnesota Supercomputer Institute.
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society