Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A posteriori error estimate for the mixed
finite element method


Author: Carsten Carstensen
Journal: Math. Comp. 66 (1997), 465-476
MSC (1991): Primary 65N30, 65R20, 73C50
DOI: https://doi.org/10.1090/S0025-5718-97-00837-5
MathSciNet review: 1408371
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A computable error bound for mixed finite element methods is established in the model case of the Poisson-problem to control the error in the H(div,$\Omega $) $\times L^2(\Omega )$-norm. The reliable and efficient a posteriori error estimate applies, e.g., to Raviart-Thomas, Brezzi-Douglas-Marini, and Brezzi-Douglas-Fortin-Marini elements.


References [Enhancements On Off] (What's this?)

  • [BV] D. Braess, R. Verfürth: A posteriori error estimators for the Raviart-Thomas element. Preprint 175/1994 Fakultät für Mathematik der Ruhr-Universität Bochum.
  • [BF] F. Brezzi, M. Fortin: Mixed and hybrid finite element methods. Springer-Verlag 1991. MR 92d:65187
  • [C] P.G. Ciarlet: The finite element method for elliptic problems. North-Holland, Amsterdam 1978. MR 58:25001
  • [Cl] P. Clement: Approximation by finite element functions using local regularization. RAIRO Sér. Rouge Anal. Numér. R-2 77-84 (1975). MR 53:4569
  • [EEHJ] K. Eriksson, D. Estep, P. Hansbo, C. Johnson: Introduction to adaptive methods for differential equations. Acta Numerica (1995) 105-158. CMP 96:01
  • [G] P. Grisvard: Elliptic problems in nonsmooth domains. Pitman 1985. MR 86m:35044
  • [H] L. Hörmander: Linear partial differential operators. Berlin-Heidelberg-New York: Springer 1963. MR 28:4221
  • [LM] J.L Lions, E. Magenes: Non-homogeneous boundary value problems and applications, Vol. I. Berlin-Heidelberg-New York: Springer 1972. MR 50:2670
  • [N] S. Nicaise: Polygonal interface problems. Peter Lang, Frankfurt am Main, 1993. MR 94g:35067
  • [V1] R. Verfürth: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Teubner Skripten zur Numerik. B.G. Teubner Stuttgart 1996.
  • [V2] R. Verfürth: A posteriori error estimates and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50 (1994) 67-83. MR 95c:65171
  • [V3] R. Verfürth: A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations. Math. Comp. 62 (1994) 445-475. MR 94j:65136

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 65N30, 65R20, 73C50

Retrieve articles in all journals with MSC (1991): 65N30, 65R20, 73C50


Additional Information

Carsten Carstensen
Affiliation: Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4, D-24098 Kiel, Germany
Email: cc@numerik.uni-kiel.de

DOI: https://doi.org/10.1090/S0025-5718-97-00837-5
Keywords: Mixed finite element methods, a~posteriori error estimates, adaptive algorithm
Received by editor(s): September 12, 1995
Received by editor(s) in revised form: May 1, 1996
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society