Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



A posteriori error estimate for the mixed
finite element method

Author: Carsten Carstensen
Journal: Math. Comp. 66 (1997), 465-476
MSC (1991): Primary 65N30, 65R20, 73C50
MathSciNet review: 1408371
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A computable error bound for mixed finite element methods is established in the model case of the Poisson-problem to control the error in the H(div,$\Omega $) $\times L^2(\Omega )$-norm. The reliable and efficient a posteriori error estimate applies, e.g., to Raviart-Thomas, Brezzi-Douglas-Marini, and Brezzi-Douglas-Fortin-Marini elements.

References [Enhancements On Off] (What's this?)

  • [BV] D. Braess, R. Verfürth: A posteriori error estimators for the Raviart-Thomas element. Preprint 175/1994 Fakultät für Mathematik der Ruhr-Universität Bochum.
  • [BF] Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205
  • [C] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR 0520174
  • [Cl] Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. \jname RAIRO Analyse Numérique 9 (1975), no. R-2, 77–84 (English, with Loose French summary). MR 0400739
  • [EEHJ] K. Eriksson, D. Estep, P. Hansbo, C. Johnson: Introduction to adaptive methods for differential equations. Acta Numerica (1995) 105-158. CMP 96:01
  • [G] P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
  • [H] Lars Hörmander, Linear partial differential operators, Die Grundlehren der mathematischen Wissenschaften, Bd. 116, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0161012
  • [LM] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth; Die Grundlehren der mathematischen Wissenschaften, Band 181. MR 0350177
  • [N] Serge Nicaise, Polygonal interface problems, Methoden und Verfahren der Mathematischen Physik [Methods and Procedures in Mathematical Physics], vol. 39, Verlag Peter D. Lang, Frankfurt am Main, 1993. MR 1236228
  • [V1] R. Verfürth: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Teubner Skripten zur Numerik. B.G. Teubner Stuttgart 1996.
  • [V2] R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques, Proceedings of the Fifth International Congress on Computational and Applied Mathematics (Leuven, 1992), 1994, pp. 67–83. MR 1284252, 10.1016/0377-0427(94)90290-9
  • [V3] R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations, Math. Comp. 62 (1994), no. 206, 445–475. MR 1213837, 10.1090/S0025-5718-1994-1213837-1

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 65N30, 65R20, 73C50

Retrieve articles in all journals with MSC (1991): 65N30, 65R20, 73C50

Additional Information

Carsten Carstensen
Affiliation: Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4, D-24098 Kiel, Germany

Keywords: Mixed finite element methods, a~posteriori error estimates, adaptive algorithm
Received by editor(s): September 12, 1995
Received by editor(s) in revised form: May 1, 1996
Article copyright: © Copyright 1997 American Mathematical Society