A least-squares approach based on a discrete minus one inner product for first order systems

Authors:
James H. Bramble, Raytcho D. Lazarov and Joseph E. Pasciak

Journal:
Math. Comp. **66** (1997), 935-955

MSC (1991):
Primary 65N30; Secondary 65F10

DOI:
https://doi.org/10.1090/S0025-5718-97-00848-X

MathSciNet review:
1415797

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to develop and analyze a least-squares approximation to a first order system. The first order system represents a reformulation of a second order elliptic boundary value problem which may be indefinite and/or nonsymmetric. The approach taken here is novel in that the least-squares functional employed involves a discrete inner product which is related to the inner product in (the Sobolev space of order minus one on ). The use of this inner product results in a method of approximation which is optimal with respect to the required regularity as well as the order of approximation even when applied to problems with low regularity solutions. In addition, the discrete system of equations which needs to be solved in order to compute the resulting approximation is easily preconditioned, thus providing an efficient method for solving the algebraic equations. The preconditioner for this discrete system only requires the construction of preconditioners for standard second order problems, a task which is well understood.

**1.**A.K. Aziz and I. Babu\v{s}ka,*Part I, survey lectures on the mathematical foundations of the finite element method*, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A.K. Aziz, ed.), Academic Press, New York, NY, 1972, pp. 1-362. MR**54:9111****2.**A. K. Aziz, R. B. Kellogg, and A.B. Stephens,*Least-squares methods for elliptic systems*, Math. Comp.**44**(1985), 53-70. MR**86i:65069****3.**I. Babu\v{s}ka,*On the Schwarz algorithm in the theory of differential equations of mathematical physics*, Tchecosl. Math. J.**8**(1958), 328-342 (in Russian).**4.**R.E. Bank and T. Dupont,*An optimal order process for solving finite element equations*, Math. Comp.**36**(1981), 35-51. MR**82b:65113****5.**J.H. Bramble and J.E. Pasciak,*New convergence estimates for multigrid algorithms*, Math. Comp.**49**(1987), 311-329. MR**89b:65234****6.**J.H. Bramble and R. Scott,*Simultaneous approximation in scales of Banach spaces*, Math. Comp.**32**(1978), 947-954. MR**80a:65222****7.**J.H. Bramble and J. Xu,*Some estimates for weighted projections*, Math. Comp.**56**(1991), 463-476. MR**91k:65140****8.**P. B. Bochev and M. D. Gunzburger,*Accuracy of least-squares methods for the Navier-Stokes equations*, Comput. Fluids**22**(1993), 549-563. MR**94e:76053****9.**P. B. Bochev and M. D. Gunzburger,*Analysis of least-squares finite element methods for the Stokes equations*, Math. Comp.**63**(1994), 479-506. MR**95c:76060****10.**F. Brezzi,*On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers*, R.A.I.R.O.**8**(1974), 129-151. MR**51:1540****11.**F. Brezzi and M. Fortin,*Mixed and Hybrid Finite Element Methods*, Springer-Verlag, New York, 1991. MR**92d:65187****12.**Z. Cai, R. Lazarov, T. Manteuffel, and S. McCormick,*First-order system least-squares for second-order partial differential equations: Part I*, SIAM J. Numer. Anal.**31**(1994), 1785-1799. MR**95i:65133****13.**P.G. Ciarlet,*Basic error estimates for elliptic problems*, Finite Element Methods : Handbook of Numerical Analysis, (P.G. Ciarlet and J.L. Lions, eds.), vol. II, North-Holland, New York, 1991, pp. 18-352. CMP**91:14****14.**G. F. Carey and Y. Shen,*Convergence studies of least-squares finite elements for first order systems*, Comm. Appl. Numer. Meth.**5**(1989), 427-434.**15.**C. L. Chang,*Finite element approximation for grad-div type of systems in the plane*, SIAM J. Numerical Analysis**29**(1992), 590-601. MR**92k:65159****16.**T. F. Chen,*On the least-squares approximations to compressible flow problems*, Numer. Meth. PDE's**2**(1986), 207-228. MR**88m:65173****17.**T. F. Chen and G. J. Fix,*Least-squares finite element simulation of transonic flows*, Appl. Numer. Math.**2**(1986), 399-408.**18.**M. Dauge,*Elliptic Boundary Value Problems on Corner Domains*, Lecture Notes in Mathematics, 1341, Springer-Verlag, 1988. MR**91a:35078****19.**P. Grisvard,*Elliptic Problems in Nonsmooth Domains*, Pitman, Boston, 1985. MR**86m:35044****20.**T. J. R. Hughes and L. P. Franca,*A new finite element formulation for computational fluid dynamics. VII. The Stokes problems with various well-posed boundary conditions: symmetric formulation that converges for all velocity pressure spaces*, Comput. Meth. Appl. Mech. Engrg.**65**(1987), 85-96. MR**89j:76015g****21.**T. J. R. Hughes, L. P. Franca, and M. Bulestra,*A new finite element formulation for computational fluid dynamics. V. Circumventing the Babu\v{s}ka-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accomodating equal-order interpolations*, Comput. Meth. Appl. Mech. Engrg.**59**(1986), 85-99. MR**89j:76015d****22.**D. C. Jespersen,*A least-square decomposition method for solving elliptic systems*, Math. Comp.**31**(1977), 873-880. MR**57:1930****23.**B. N. Jiang and C. Chang,*Least-squares finite elements for the Stokes problem*, Comput. Meth. Appl. Mech. Engrg.**78**(1990), 297-311. MR**91h:76058****24.**B. N. Jiang and L. A. Povinelli,*Optimal least-squares finite element method for elliptic problems*, Comput. Meth. Appl. Mech. Engrg.**102**(1993), 199-212. MR**93h:65139****25.**O. A. Ladyzhenskaya,*The Mathematical Theory of Viscous Incompressible Flows*, Gordon and Breach, London, 1969. MR**40:7610****26.**J.L. Lions and E. Magenes,*Problèmes aux Limites non Homogènes et Applications*, vol. 1, Dunod, Paris, 1968.MR**40:512****27.**J. Mandel, S. McCormick and R. Bank,*Variational multigrid theory*, Multigrid Methods (S. McCormick, ed.), SIAM, Philadelphia, Penn., 1987, pp. 131-178. CMP**21:05****28.**P. Neittaanmäki and J. Saranen,*On finite element approximation of the gradient for the solution to Poisson equation*, Numer. Math.**37**(1981), 333-337. MR**82h:65086****29.**J. Ne[??]cas,*Les Méthodes Directes en Théorie des Équations Elliptiques*, Academia, Prague, 1967. MR**37:3168****30.**A. I. Pehlivanov, G. F. Carey, and R. D. Lazarov,*Least squares mixed finite elements for second order elliptic problems*, SIAM J. Numer. Anal.**31**(1994), 1368-1377. MR**95f:65206****31.**A. I. Pehlivanov, G. F. Carey, R. D. Lazarov, and Y. Shen,*Convergence analysis of least-squares mixed finite elements*, Computing**51**(1993), 111-123. MR**95b:65096****32.**A. I. Pehlivanov, G. F. Carey and P. S. Vassilevski,*Least-squares mixed finite element methods for non-selfadjoint elliptic problems: I. Error estimates*, Numerische Mathematik**72**(1996), 502-522. CMP**96:08****33.**P.A. Raviart and J.M. Thomas,*A mixed finite element method for 2-nd order elliptic problems*, Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics, #606 (Eds. I. Galligani and E. Magenes), Springer-Verlag, New York, 1977, pp. 292-315. MR**58:3547****34.**W. L. Wendland,*Elliptic Systems in the Plane*, Pitman, London, 1979. MR**80h:35053**

Retrieve articles in *Mathematics of Computation of the American Mathematical Society*
with MSC (1991):
65N30,
65F10

Retrieve articles in all journals with MSC (1991): 65N30, 65F10

Additional Information

**James H. Bramble**

Affiliation:
Department of Mathematics, Cornell University, Ithaca, New York 14853 and Department of Mathematics, Texas A&M University, College Station, Texas 77843-3404

Email:
bramble@math.tamu.edu

**Raytcho D. Lazarov**

Affiliation:
Department of Mathematics, Texas A&M University, College Station, Texas 77843-3404

Email:
lazarov@math.tamu.edu

**Joseph E. Pasciak**

Affiliation:
Department of Mathematics, Texas A&M University, College Station, Texas 77843-3404

Email:
pasciak@math.tamu.edu

DOI:
https://doi.org/10.1090/S0025-5718-97-00848-X

Received by editor(s):
October 9, 1995

Received by editor(s) in revised form:
June 5, 1996

Additional Notes:
This manuscript has been authored under contract number DE-AC02-76CH00016 with the U.S. Department of Energy. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. This work was also supported in part under the National Science Foundation Grant No. DMS-9007185 and by the U.S. Army Research Office through the Mathematical Sciences Institute, Cornell University.

Article copyright:
© Copyright 1997
American Mathematical Society