Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Pure product polynomials and the Prouhet-Tarry-Escott problem

Author: Roy Maltby
Journal: Math. Comp. 66 (1997), 1323-1340
MSC (1991): Primary 11Y50, 11B75
MathSciNet review: 1422792
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An $n$-factor pure product is a polynomial which can be expressed in the form $\prod _{i=1}^n(1-x^{\alpha _i})$ for some natural numbers $\alpha _1,\ldots ,\alpha _n$. We define the norm of a polynomial to be the sum of the absolute values of the coefficients. It is known that every $n$-factor pure product has norm at least $2n$. We describe three algorithms for determining the least norm an $n$-factor pure product can have. We report results of our computations using one of these algorithms which include the result that every $n$-factor pure product has norm strictly greater than $2n$ if $n$ is $7$, $9$, $10$, or $11$.

References [Enhancements On Off] (What's this?)

  • [BN66] George Bachman and Lawrence Narici, Functional Analysis, Academic Press (1966). MR 36:638
  • [B13] L. Bastien, Impossibilité de $u+v\: {{3}\atop {{=}\atop {\ }}}\: x+y+z$, Sphinx-Oedipe 8 (1913), 171-172.
  • [BV83] E. Bombieri and J. Vaaler, ``On Siegel's Lemma'', Invent. Math. 73 (1983), 11-32. MR 85g:11049a
  • [B94] Peter Borwein, personal communication.
  • [BI94] Peter Borwein and Colin Ingalls, ``The Prouhet-Tarry-Escott Problem Revisited'', Enseign. Math. (2) 40 (1994), 3-27. MR 95d:11038
  • [DB37] H.L. Dorwart and O.E. Brown, ``The Tarry-Escott Problem'', M.A.A. Monthly 44 (1937), 613-626.
  • [ES58] P. Erd\H{o}s and G. Szekeres, ``On the Product $\prod _{k=1}^n(1-z^{\alpha _k})$'', Acad. Serbe Sci. Publ. Inst. Math. 13 (1959), 29-34. MR 23:A3721
  • [L98] E. Laguerre, Oeuvres, vol. 1, Gauthier-Villars, Paris (1898).
  • [M94a] Samuel J. Maltby, ``Some Optimal Results Related to the PTE Problem'', preprint.
  • [M94b] Samuel J. Maltby, personal communication.
  • [M69] L.J. Mordell, Diophantine Equations, Academic Press (1969). MR 40:2600
  • [M96] R. Maltby, Pure Product Polynomials of Small Norm, Ph.D. dissertation, Simon Fraser University (1996).
  • [M97] R. Maltby ``Root Systems and the Erd\H{o}s-Szekeres Problem'', submitted to Acta Arithmetica.
  • [P13] G. Pólya, ``Sur un théorème de Laguerre'', C.R. Acad. Sci. Paris 156 (1913), 996-999.
  • [S29] C.L. Siegel, ``Über einige Anwendungen diophantischer Approximationen'', Abhandlungen der Preussischen Akademie der Wissenschaften, Physikalisch-Mathematische Klasse, Nr. 1 (1929), (Gesammelte Abhandlungen I, 209-266, Springer-Verlag, 1966).
  • [S71] John Steinig, ``On some rules of Laguerre's, and systems of equal sums of like powers'', Rome U., Rend. Mat. (6) 4 (1971), 629-644. MR 46:8972
  • [W94] David Walley, personal communication.

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 11Y50, 11B75

Retrieve articles in all journals with MSC (1991): 11Y50, 11B75

Additional Information

Roy Maltby
Affiliation: Centre for Experimental and Constructive Mathematics, Simon Fraser University, Burnaby, BC, Canada V5A 1S6

Keywords: Prouhet-Tarry-Escott Problem, Tarry-Escott Problem, Erd\H os-Szekeres Problem
Received by editor(s): October 16, 1995
Received by editor(s) in revised form: June 19, 1996
Article copyright: © Copyright 1997 by the author

American Mathematical Society