Analysis of a cell-vertex finite volume method for convection-diffusion problems

Authors:
K. W. Morton, Martin Stynes and Endre Süli

Journal:
Math. Comp. **66** (1997), 1389-1406

MSC (1991):
Primary 65N99, 65L10; Secondary 76M25

DOI:
https://doi.org/10.1090/S0025-5718-97-00886-7

MathSciNet review:
1432132

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A cell-vertex finite volume approximation of elliptic convection-dominated diffusion equations is considered in two dimensions. The scheme is shown to be stable and second-order convergent in a mesh-dependent -norm.

**1.**P. Balland and E. Süli,*Analysis of the cell vertex finite volume method for hyperbolic equations with variable coefficients,*SIAM J. Numer. Anal.**34**, No. 3, June 1997.**2.**P.I. Crumpton, J.A. Mackenzie and K.W. Morton,*Cell vertex algorithms for the compressible Navier-Stokes equations,*Journal of Computational Physics,**109**(1993), 1-15.MR**94e:76081****3.**A. Jameson,*Acceleration of transonic potential flow calculations on arbitrary meshes by the multiple grid method,*AIAA Paper**79**, p. 1458, 1979.**4.**H. Keller,*A new finite difference scheme for parabolic problems,*In: Numerical Solution of Partial Differential Equations II, SYNSPADE 1970 (Ed., B. Hubbard,) Academic Press, 1971, 327-350. MR**43:2866****5.**K. W. Morton,*Numerical Solution of Convection-Diffusion Problems,*Applied Mathematics and Mathematical Computation,**12**, Chapman and Hall, London, 1996.**6.**K.W. Morton, P.I. Crumpton and J.A. Mackenzie,*Cell vertex methods for inviscid and viscous flows,*Computers Fluids,**22**(1993), 91-102.**7.**J. A. Mackenzie and K. W. Morton,*Finite volume solutions of convection-diffusion test problems,*Mathematics of Computation,**60**(1992), 189-220. MR**93d:76065****8.**K. W. Morton and M. F. Paisley,*A finite volume scheme with shock fitting for the steady Euler equations,*Journal of Computational Physics,**80**(1989), 168-203.**9.**K. W. Morton and M. Stynes,*An analysis of the cell vertex method,*Mathematical Modelling and Numerical Analysis,**28**(1994), 699-724. MR**95h:65072****10.**K. W. Morton and E. Süli,*Finite volume methods and their analysis,*IMA Journal of Numerical Analysis,**11**(1991), 241-260. MR**93e:65145****11.**R. H. Ni,*A multiple grid method for solving the Euler equations,*AIAA J.**20**(1982), 1565-1571.**12.**L.A. Oganesian and L.A. Ruhovec,*Variational-difference methods for the solution of elliptic equations,*Publ. of the Armenian Academy of Sciences, Yerevan, 1979. (In Russian).**13.**A. Preissmann,*Propagation des intumescences dans les canaux et rivieras,*Paper presented at the First Congress of the French Association for Computation, held at Grenoble, France, 1961.**14.**H. G. Roos, M. Stynes and L. Tobiska,*Numerical Methods for Singularly Perturbed Differential Equations*, Springer Computational Mathematics,**24**, Springer-Verlag, 1996.**15.**E. Süli,*Finite volume methods on distorted partitions: stability, accuracy, adaptivity,*Technical Report NA89/6, Oxford University Computing Laboratory, 1989.**16.**E. Süli,*The accuracy of finite volume methods on distorted partitions,*Mathematics of Finite Elements and Applications VII (J.R. Whiteman, ed.) Academic Press, 1991, 253-260. MR**92i:65171****17.**E. Süli,*The accuracy of cell vertex finite volume methods on quadrilateral meshes,*Mathematics of Computation,**59**(1992), 359-382. MR**93a:65158****18.**H. A. Thomas,*Hydraulics of Flood Movements in Rivers,*Carnegie Institute of Technology, Pittsburgh, Pennsylvania, 1937.**19.**B. Wendroff,*On centered difference equations for hyperbolic systems,*J. Soc. Indust. Appl. Math.**8**(1960), 549-555. MR**22:7259**

Retrieve articles in *Mathematics of Computation of the American Mathematical Society*
with MSC (1991):
65N99,
65L10,
76M25

Retrieve articles in all journals with MSC (1991): 65N99, 65L10, 76M25

Additional Information

**K. W. Morton**

Affiliation:
Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom

Email:
Bill.Morton@comlab.ox.ac.uk

**Martin Stynes**

Affiliation:
Department of Mathematics, University College, Cork, Ireland

Email:
STMT8007@iruccvax.ucc.ie

**Endre Süli**

Affiliation:
Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom

Email:
Endre.Suli@comlab.ox.ac.uk

DOI:
https://doi.org/10.1090/S0025-5718-97-00886-7

Keywords:
Finite volume methods,
stability,
error analysis

Received by editor(s):
November 22, 1994

Received by editor(s) in revised form:
January 26, 1996, and June 12, 1996

Additional Notes:
The authors are grateful to the British Council and Forbairt for the generous financial support of this project.

Article copyright:
© Copyright 1997
American Mathematical Society