Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Analysis of a cell-vertex finite volume method for convection-diffusion problems


Authors: K. W. Morton, Martin Stynes and Endre Süli
Journal: Math. Comp. 66 (1997), 1389-1406
MSC (1991): Primary 65N99, 65L10; Secondary 76M25
DOI: https://doi.org/10.1090/S0025-5718-97-00886-7
MathSciNet review: 1432132
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A cell-vertex finite volume approximation of elliptic convection-dominated diffusion equations is considered in two dimensions. The scheme is shown to be stable and second-order convergent in a mesh-dependent $L_2$-norm.


References [Enhancements On Off] (What's this?)

  • 1. P. Balland and E. Süli, Analysis of the cell vertex finite volume method for hyperbolic equations with variable coefficients, SIAM J. Numer. Anal. 34, No. 3, June 1997.
  • 2. P. I. Crumpton, J. A. Mackenzie, and K. W. Morton, Cell vertex algorithms for the compressible Navier-Stokes equations, J. Comput. Phys. 109 (1993), no. 1, 1–15. MR 1244209, https://doi.org/10.1006/jcph.1993.1194
  • 3. A. Jameson, Acceleration of transonic potential flow calculations on arbitrary meshes by the multiple grid method, AIAA Paper 79, p. 1458, 1979.
  • 4. Herbert B. Keller, A new difference scheme for parabolic problems, Numerical Solution of Partial Differential Equations, II (SYNSPADE 1970) (Proc. Sympos., Univ. of Maryland, College Park, Md., 1970) Academic Press, New York, 1971, pp. 327–350. MR 0277129
  • 5. K. W. Morton, Numerical Solution of Convection-Diffusion Problems, Applied Mathematics and Mathematical Computation, 12, Chapman and Hall, London, 1996.
  • 6. K.W. Morton, P.I. Crumpton and J.A. Mackenzie, Cell vertex methods for inviscid and viscous flows, Computers Fluids, 22 (1993), 91-102.
  • 7. J. A. Mackenzie and K. W. Morton, Finite volume solutions of convection-diffusion test problems, Math. Comp. 60 (1993), no. 201, 189–220. MR 1153168, https://doi.org/10.1090/S0025-5718-1993-1153168-0
  • 8. K. W. Morton and M. F. Paisley, A finite volume scheme with shock fitting for the steady Euler equations, Journal of Computational Physics, 80 (1989), 168-203.
  • 9. K. W. Morton and M. Stynes, An analysis of the cell vertex method, RAIRO Modél. Math. Anal. Numér. 28 (1994), no. 6, 699–724. MR 1302420
  • 10. K. W. Morton and E. Süli, Finite volume methods and their analysis, IMA J. Numer. Anal. 11 (1991), no. 2, 241–260. MR 1105229, https://doi.org/10.1093/imanum/11.2.241
  • 11. R. H. Ni, A multiple grid method for solving the Euler equations, AIAA J. 20 (1982), 1565-1571.
  • 12. L.A. Oganesian and L.A. Ruhovec, Variational-difference methods for the solution of elliptic equations, Publ. of the Armenian Academy of Sciences, Yerevan, 1979. (In Russian).
  • 13. A. Preissmann, Propagation des intumescences dans les canaux et rivieras, Paper presented at the First Congress of the French Association for Computation, held at Grenoble, France, 1961.
  • 14. H. G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations, Springer Computational Mathematics, 24, Springer-Verlag, 1996.
  • 15. E. Süli, Finite volume methods on distorted partitions: stability, accuracy, adaptivity, Technical Report NA89/6, Oxford University Computing Laboratory, 1989.
  • 16. Endre Süli, The accuracy of finite volume methods on distorted partitions, The mathematics of finite elements and applications, VII (Uxbridge, 1990) Academic Press, London, 1991, pp. 253–260. MR 1132503
  • 17. Endre Süli, The accuracy of cell vertex finite volume methods on quadrilateral meshes, Math. Comp. 59 (1992), no. 200, 359–382. MR 1134740, https://doi.org/10.1090/S0025-5718-1992-1134740-X
  • 18. H. A. Thomas, Hydraulics of Flood Movements in Rivers, Carnegie Institute of Technology, Pittsburgh, Pennsylvania, 1937.
  • 19. Burton Wendroff, On centered difference equations for hyperbolic systems, J. Soc. Indust. Appl. Math. 8 (1960), 549–555. MR 0116472

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 65N99, 65L10, 76M25

Retrieve articles in all journals with MSC (1991): 65N99, 65L10, 76M25


Additional Information

K. W. Morton
Affiliation: Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom
Email: Bill.Morton@comlab.ox.ac.uk

Martin Stynes
Affiliation: Department of Mathematics, University College, Cork, Ireland
Email: STMT8007@iruccvax.ucc.ie

Endre Süli
Affiliation: Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom
Email: Endre.Suli@comlab.ox.ac.uk

DOI: https://doi.org/10.1090/S0025-5718-97-00886-7
Keywords: Finite volume methods, stability, error analysis
Received by editor(s): November 22, 1994
Received by editor(s) in revised form: January 26, 1996, and June 12, 1996
Additional Notes: The authors are grateful to the British Council and Forbairt for the generous financial support of this project.
Article copyright: © Copyright 1997 American Mathematical Society