Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Quadrature formulae using
zeros of Bessel functions as nodes


Author: Riadh Ben Ghanem
Journal: Math. Comp. 67 (1998), 323-336
MSC (1991): Primary 65D32, 41A55, 33C10
DOI: https://doi.org/10.1090/S0025-5718-98-00882-5
MathSciNet review: 1432128
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A gaussian type quadrature formula, where the nodes are the zeros of Bessel functions of the first kind of order $\alpha$ ($\Re(\alpha) > -1$), was recently proved for entire functions of exponential type. Here we relax the restriction on $\alpha$ as well as on the function. Some applications are also given.


References [Enhancements On Off] (What's this?)

  • 1. R. Ben Ghanem and C. Frappier, Spherical Bessel functions and explicit quadrature formula, Math. Comp. 66 (1997), 289-296. MR 97c:33005
  • 2. R. P. Boas, Inequalities between series and integrals involving entire functions, J. Indian Math. Soc. 16 (1952), 127-135. MR 14:631e
  • 3. -, Entire functions, Academic Press, New York, 1954. MR 16:914f
  • 4. -, Summation formulas and band-limited signals, Tôhoku Math. J. 24 (1972), 121-125. MR 48:9252
  • 5. C. Frappier and P. Olivier, A quadrature formula involving zeros of Bessel functions, Math. Comp. 60 (1993), 303-316. MR 93d:41025
  • 6. C. Frappier and Q. I. Rahman, Une formule de quadrature pour les fonctions entières de type exponentiel, Ann. Sci. Math. Québec 10 (1986), 17-26. MR 88a:65031
  • 7. R. Gervais, Q. I. Rahman and G. Schmeisser, Representation and approximation of functions via (0, 2)-interpolation, J. Approx. Theory 50 (1987), 89-110. MR 88e:41009
  • 8. G. R. Grozev and Q. I. Rahman, A quadrature formula with zeros of Bessel functions as nodes, Math. Comp. 64 (1995), 715-725. MR 95f:65054
  • 9. Q. I. Rahman and G. Schmeisser, Quadrature formulae and functions of exponential type, Math. Comp. 54 (1990), 245-270. MR 90g:65028
  • 10. W. Rudin, Real and complex analysis, 2nd ed., McGraw-Hill, New York, 1974. MR 49:8783
  • 11. G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge, 1966.

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 65D32, 41A55, 33C10

Retrieve articles in all journals with MSC (1991): 65D32, 41A55, 33C10


Additional Information

Riadh Ben Ghanem
Affiliation: Département de Mathématiques et de Statistique, Université de Montréal, C. P. 6128, Succ. Centre-Ville, Montréal, Québec, Canada H3C 3J7
Email: benghanr@ere.umontreal.ca

DOI: https://doi.org/10.1090/S0025-5718-98-00882-5
Keywords: Quadrature formulae, entire functions, Bessel functions.
Received by editor(s): March 27, 1996
Received by editor(s) in revised form: September 11, 1996
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society