Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A space-time finite element method for
the nonlinear Schrödinger equation:
the discontinuous Galerkin method


Authors: Ohannes Karakashian and Charalambos Makridakis
Journal: Math. Comp. 67 (1998), 479-499
MSC (1991): Primary 65M60, 65M12
DOI: https://doi.org/10.1090/S0025-5718-98-00946-6
MathSciNet review: 1459390
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The convergence of the discontinuous Galerkin method for the nonlinear (cubic) Schrödinger equation is analyzed in this paper. We show the existence of the resulting approximations and prove optimal order error estimates in $L^{\infty }(L^{2} ) .$ These estimates are valid under weak restrictions on the space-time mesh.


References [Enhancements On Off] (What's this?)

  • [ADK] G.D. Akrivis, V.A. Dougalis and O. A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numer. Math. 59 (1991), 31-53. MR 92a:65256
  • [BO] I. Babu\v{s}ka and J. E. Osborn, Analysis of finite element methods for second order boundary value problems using mesh dependent norms, Numer. Math. 34 (1980), 41-62. MR 81g:65143
  • [BL] L. Bales and I. Lasiecka, Continuous finite elements in space and time for the nonhomogeneous wave equation, Computers Math. Applic. 27 (1994), 91-102. MR 94k:65138
  • [BS] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer -Verlag, New York, 1994. MR 95f:65001
  • [Br] F.E. Browder, Existence and uniqueness theorems for solutions of nonlinear boundary value problems, Applications of Partial Differential Equations (R. Finn, ed.), American Mathematical Society, Providence, pp. 24-29, 1965. MR 33:6092
  • [CGT] R.Y. Chiao, E. Garmire and C. Townes, Self-trapping of optical beams, Phys. Rev. Lett. 73 (1964), 479-482.
  • [CrT] M. Crouzeix and V. Thomée, The stability in $L_{p}$ and $W_{p} ^{1}$ of the $L_{2}$-projection onto finite element spaces, Math. Comp. 48 (1987), 521-532. MR 88f:41016
  • [Ci] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. MR 58:25001
  • [DR] P.J. Davis and P. Rabinowitz, Methods of Numerical Integration, Academic Press, New York, 1975. MR 56:7119
  • [DV] K. Dekker and J.D. Verwer, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations, CWI Monographs, North-Holland, Amsterdam, 1984. MR 86g:65003
  • [Dr] W. Dörfler, A time- and space-adaptive algorithm for the linear time-dependent Schrödinger equation, Numer. Math. 73 (1996), 419-448. MR 97g:65183
  • [D] T. Dupont, Mesh modification for evolution equations, Math. Comp. 39 (1982), 85-107. MR 84g:65131
  • [EJ1] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems I: A linear model problem, SIAM J. Numer. Anal. 28 (1991), 43-77. MR 91m:65274
  • [EJ2] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems II: Optimal error estimates in $L_{\infty }L_{2}$ and $L_{\infty }L_{\infty }$, SIAM J. Numer. Anal. 32 (1995), 706-740. MR 96c:65162
  • [EJ3] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems IV: A nonlinear problem, SIAM J. Numer. Anal. 32 (1995), 1729-1749. MR 96i:65081
  • [EJT] K. Eriksson, C. Johnson and V. Thomée, Time discretization of parabolic problems by the Discontinuous Galerkin method, RAIRO, Anal. Numer. 19 (1985), 611-643. MR 87e:65073
  • [FP] D.A. French and T.E. Peterson, A continuous space-time finite element method for the wave equation, Math. Comp. 65 (1996), 491-506. MR 96g:65098
  • [HW] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin Heidelberg, Springer Series in Computational Mathematics v. 14, 1991. MR 92a:65016
  • [HH] T.J.R. Hughes and G.M. Hulbert, Space-time finite element methods for elastodynamics: Formulations and error estimates, Comput. Methods Appl. Mech. Engrg. 66 (1988), 339-363. MR 89c:73060
  • [J] P. Jamet, Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain., SIAM J. Numer. Anal. 15 (1978), 912-928. MR 80e:65102
  • [Jh] C. Johnson, Discontinuous Galerkin finite element methods for second order hyperbolic problems, Comput. Methods Appl. Mech. Engrg. 107 (1993), 117-129. MR 95c:65154
  • [KAD] O. Karakashian, G.D. Akrivis and V.A. Dougalis, On optimal order error estimates for the nonlinear Schrödinger equation, SIAM J. Numer. Anal. 30 (1993), 377-400. MR 94c:65119
  • [KM1] O. Karakashian and Ch. Makridakis, A space-time finite element mathod for the nonlinear Schrödinger equation: The discontinuous Galerkin method, Preprint no. 96-9, Dept. of Math., University of Crete, Heraklion, Greece (1996).
  • [KM2] O. Karakashian and Ch. Makridakis, A space-time finite element mathod for the nonlinear Schrödinger equation. II: The continuous Galerkin method, Preprint no. 96-11, Dept. of Math., University of Crete, Heraklion, Greece (1996).
  • [LR] P. Lesaint and P.A. Raviart, On a finite element method for solving the neutron transport equation, Mathematical Aspects of Finite Elements in Partial Differential Equations (C. deBoor, ed.), Academic Press, New York, 1974, pp. 89-123. MR 58:31918
  • [N] A.C. Newell, Solitons in Mathematics and Physics, vol. 48, SIAM, CBMS Applied Mathematics Series, 1985. MR 87h:35314
  • [RR] J.J. Rasmussen and K. Rypdal, Blow-up in nonlinear Schrödinger equations-I: A general review, Phys. Scripta 33 (1986), 481-497. MR 87m:35203
  • [SW] A.H. Schatz and L.B. Wahlbin, Interior maximum-norm estimates for finite element methods, Part II, Math. Comp. 64 (1995), 907-928. MR 95j:65143
  • [S] W.A. Strauss, The Nonlinear Schrödinger Equation, Contemporary developments in continuum mechanics and p.d.e.'s (G.M. de la Penha and L.A.J. Medeiros, eds.), North Holland, Amsterdam, pp. 452-465, 1978. MR 81i:35047
  • [T] V.I. Talanov, Self-focusing of wave beams in nonlinear media, JETP Lett. 2 (1965), 138-141.
  • [Th] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Lecture Notes in Mathematics, v. 1054, Springer -Verlag, Berlin, 1984. MR 86k:65006
  • [W] G.B. Whitham, Linear and nonlinear waves, Wiley, 1974. MR 58:3905

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (1991): 65M60, 65M12

Retrieve articles in all journals with MSC (1991): 65M60, 65M12


Additional Information

Ohannes Karakashian
Affiliation: Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37966
Email: ohannes@math.utk.edu

Charalambos Makridakis
Affiliation: Department of Mathematics, University of Crete, 714 09 Heraklion, Crete, Greece
Email: makr@sargos.math.uch.gr

DOI: https://doi.org/10.1090/S0025-5718-98-00946-6
Received by editor(s): February 19, 1996
Received by editor(s) in revised form: October 25, 1996
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society