An adaptive strategy

for elliptic problems including

a posteriori controlled boundary approximation

Authors:
W. Dörfler and M. Rumpf

Journal:
Math. Comp. **67** (1998), 1361-1382

MSC (1991):
Primary 65N15, 65N30, 65N50

DOI:
https://doi.org/10.1090/S0025-5718-98-00993-4

MathSciNet review:
1489969

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We derive a posteriori error estimates for the approximation of linear elliptic problems on domains with piecewise smooth boundary. The numerical solution is assumed to be defined on a Finite Element mesh, whose boundary vertices are located on the boundary of the continuous problem. No assumption is made on a geometrically fitting shape.

A posteriori error estimates are given in the energy norm and the -norm, and efficiency of the adaptive algorithm is proved in the case of a saturated boundary approximation. Furthermore, a strategy is presented to compute the effect of the non-discretized part of the domain on the error starting from a coarse mesh. This especially implies that parts of the domain, where the measured error is small, stay non-discretized. The presented algorithm includes a stable path following to supply a sufficient polygonal approximation of the boundary, the reliable computation of the a posteriori estimates and a mesh adaptation based on Delaunay techniques. Numerical examples illustrate that errors outside the initial discretization will be detected.

**[Ad]**Adams, R. A. (1975): Sobolev spaces. Academic Press, New York. MR**56:9247****[Al]**Alt, H. W. (1985): Lineare Funktionalanalysis. Springer, Berlin.**[Bä]**Bänsch, E. (1991): Local mesh refinement in 2 and 3 dimensions. Impact Comput. Sci. Engrg., 3, 181-191. MR**92h:65150****[BK]**Bramble, J. H., King, J. T. (1994): A robust finite element method for non-homogeneous Dirichlet problems in domains with curved boundaries. Math. Comp., 63, 1-17. MR**94i:65112****[BR]**Babu\v{s}ka, I., Rheinboldt, W. C. (1978): Error estimators for adaptive finite element computations. SIAM J. Numer. Anal., 15, 736-754. MR**58:3400****[BW]**Bank, R. E., Weiser, A. (1985): Some a priori error estimators for elliptic partial differential equations. Math. Comp., 44, 283-301. MR**86g:65207****[Ba]**Baker, T. J. (1989): Automatic mesh generation for complex three-dimensional regions using a constrained Delaunay triangulation. Engineering with Computers, 5, 161-175.**[Ci]**Ciarlet, P. G. (1978): The finite element method for elliptic problems. Studies in Mathematics and its Applications, North-Holland, Amsterdam, 2. Edition. MR**58:25001****[Cl]**Clément, P. (1975): Approximation by finite element functions using local regularizations. RAIRO Modél. Math. Anal. Numér., 2, 77-84. MR**53:4569****[Dö1]**Dörfler, W. (1996): A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal., 33, 1106-1124. MR**97e:65139****[Dö2]**Dörfler, W. (1995): A robust adaptive strategy for the nonlinear Poisson equation. Computing, 55, 289-304. MR**97e:65111****[GH]**George, P. L., Hermeline, F. (1992): Delaunay's mesh of a convex polyhedron in dimension . Internat. J. Numer. Methods Engrg., 33, 975-995. MR**93e:65117****[HTH]**Hamann, B., Thornburg, H. J., Hong, G. (1995): Automatic unstructured grid generation based on iterative point insertion. Computing, 55, 135-161. MR**96d:65036****[Ka]**Kadlec, J. (1964): On the regularity of the solution of the Poisson problem on a domain with boundary locally similar to the boundary of a convex open set (in Russian). Czechoslovak Math. J., 14, 386-393. MR**30:329****[LM]**Lions, J. L., Magenes, E. (1972): Non-homogeneous boundary value problems and applications I., Springer, New York. MR**50:2670****[Re]**Rebay, S. (1993): Efficient unstructured mesh generation by means of Delaunay triangulation and Bowyer-Watson algorithm. J. Comput. Physics, 106, 125-138.**[Ri]**Rivara, M.-C. (1984): Algorithms for refining triangular grids suitable for adaptive and multigrid techniques. Internat. J. Numer. Methods Engrg., 20, 745-756. MR**85h:65258****[SZ]**Scott, L. R., Zhang, S. (1990): Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54, 483-493 MR**90j:65021****[SM]**Spanier, J., Maize, E. H (1994): Quasi-random methods for estimating integrals using relatively small samples. SIAM Review, 36, 18-44. MR**95b:65013****[Ve1]**Verfürth, R. (1994): A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math., 50, 67-83. MR**95c:65171****[Ve2]**Verfürth, R. (1994): A posteriori error estimates for nonlinear problems. Math. Comp., 62, 445-475. MR**94j:65136****[We]**Weatherhill, N. P. (1992): Delaunay triangulation in CFD. Comput. Math. Appl., 24.2, 129-150.**[Y]**Yserentant, H. (1986): On the multi-level splitting of finite element spaces, Numer. Math. 49 (1986), 379-412. MR**88d:65068a**

Retrieve articles in *Mathematics of Computation of the American Mathematical Society*
with MSC (1991):
65N15,
65N30,
65N50

Retrieve articles in all journals with MSC (1991): 65N15, 65N30, 65N50

Additional Information

**W. Dörfler**

Affiliation:
Institut für Angewandte Mathematik, Universität Freiburg, Hermann-Herder- Strasse 10, D-79104 Freiburg, Germany

Email:
willy@mathematik.uni-freiburg.de

**M. Rumpf**

Affiliation:
Institut für Angewandte Mathematik, Universität Bonn, Wegelerstrasse 6, D-52115 Bonn, Germany

Email:
rumpf@iam.uni-bonn.de

DOI:
https://doi.org/10.1090/S0025-5718-98-00993-4

Keywords:
Adaptive mesh refinement,
a posteriori error estimate,
boundary approximation,
Poisson's equation

Received by editor(s):
March 4, 1996

Received by editor(s) in revised form:
January 23, 1997

Article copyright:
© Copyright 1998
American Mathematical Society