On the convergence of boundary element

methods for initial-Neumann problems

for the heat equation

Author:
Yang Hongtao

Journal:
Math. Comp. **68** (1999), 547-557

MSC (1991):
Primary 65M30; Secondary 65R20

DOI:
https://doi.org/10.1090/S0025-5718-99-01022-4

MathSciNet review:
1609650

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study boundary element methods for initial-Neumann problems for the heat equation. Error estimates for some fully discrete methods are established. Numerical examples are presented.

**1.**Douglas N. Arnold and Patrick J. Noon,*Coercivity of the single layer heat potential*, J. Comput. Math.**7**(1989), no. 2, 100–104. China-US Seminar on Boundary Integral and Boundary Element Methods in Physics and Engineering (Xi’an, 1987–88). MR**1016829****2.**Douglas N. Arnold and Wolfgang L. Wendland,*On the asymptotic convergence of collocation methods*, Math. Comp.**41**(1983), no. 164, 349–381. MR**717691**, https://doi.org/10.1090/S0025-5718-1983-0717691-6**3.**Christopher T. H. Baker,*The numerical treatment of integral equations*, Clarendon Press, Oxford, 1977. Monographs on Numerical Analysis. MR**0467215****4.**C. A. Brebbia and D. Nardini,*Solution of parabolic and hyperbolic time dependent problems using boundary elements*, Comput. Math. Appl. Part B**12**(1986), no. 5-6, 1061–1072. MR**871346****5.**C. A. Brebbia and L. A. Wrobel,*The solution of parabolic problems using the dual reciprocity boundary element*, Advanced boundary element methods (San Antonio, Tex., 1987) Springer, Berlin, 1988, pp. 55–71. MR**941824****6.**Martin Costabel,*Boundary integral operators for the heat equation*, Integral Equations Operator Theory**13**(1990), no. 4, 498–552. MR**1058085**, https://doi.org/10.1007/BF01210400**7.**M. Costabel, K. Onishi, and W. L. Wendland,*A boundary element collocation method for the Neumann problem of the heat equation*, Inverse and ill-posed problems (Sankt Wolfgang, 1986) Notes Rep. Math. Sci. Engrg., vol. 4, Academic Press, Boston, MA, 1987, pp. 369–384. MR**1020324****8.**D. Curran and B.A. Lewis,*Boundary element method for the solution of the transient diffusion equation in two dimensions*, Appl. Math. Modeling**10**(1986), 107-113.**9.**Frank de Hoog and Richard Weiss,*On the solution of a Volterra integral equation with a weakly singular kernel*, SIAM J. Math. Anal.**4**(1973), 561–573. MR**0337045**, https://doi.org/10.1137/0504049**10.**Avner Friedman,*Partial differential equations of parabolic type*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR**0181836****11.**Huang Mingyou,*Finite Element Methods for Evolution Equations*, Shanghai Press of Technology and Science, 1983.**12.**Li Ronghua and Feng Guocheng,*The Numerical Treatment for Differential Equations*, The People's Education Press, 1980.**13.**Peter Linz,*Analytical and numerical methods for Volterra equations*, SIAM Studies in Applied Mathematics, vol. 7, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1985. MR**796318****14.**J.-L. Lions and E. Magenes,*Non-homogeneous boundary value problems and applications. Vol. I*, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth; Die Grundlehren der mathematischen Wissenschaften, Band 181. MR**0350177**

J.-L. Lions and E. Magenes,*Non-homogeneous boundary value problems and applications. Vol. II*, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth; Die Grundlehren der mathematischen Wissenschaften, Band 182. MR**0350178****15.**E. A. McIntyre Jr.,*Boundary integral solutions of the heat equation*, Math. Comp.**46**(1986), no. 173, 71–79, S1–S14. MR**815832**, https://doi.org/10.1090/S0025-5718-1986-0815832-6**16.**J.-C. Nédélec,*Curved finite element methods for the solution of singular integral equations on surfaces in 𝑅³*, Comput. Methods Appl. Mech. Engrg.**8**(1976), no. 1, 61–80. MR**0455503**, https://doi.org/10.1016/0045-7825(76)90053-0**17.**P.J. Noon,*The single layer heat potential and Galerkin boundary element methods for the heat equation*, Ph.D. thesis, University of Maryland, U.S.A., 1988**18.**Kazuei Onishi,*Convergence in the boundary element method for heat equation*, TRU Math.**17**(1981), no. 2, 213–225. MR**648929****19.**K. Onishi,*Boundary element method for time dependent heat equation*, Proceedings of the 1st Japan-China Symposium on Boundary Element Methods (ed. by M. Takana and Q. Du).**20.**Fiorella Sgallari,*A weak formulation of boundary integral equations for time dependent parabolic problems*, Appl. Math. Modelling**9**(1985), no. 4, 295–301. MR**801045**, https://doi.org/10.1016/0307-904X(85)90068-X**21.**Yang Hongtao,*A new analysis of Volterra-Fredholm boundary integral equations of the second kind*, Northeast. Math. J.**13**(3) (1997), 325-334.

Retrieve articles in *Mathematics of Computation of the American Mathematical Society*
with MSC (1991):
65M30,
65R20

Retrieve articles in all journals with MSC (1991): 65M30, 65R20

Additional Information

**Yang Hongtao**

Affiliation:
Department of Mathematics, Jilin University, Changchun, 130023, China

DOI:
https://doi.org/10.1090/S0025-5718-99-01022-4

Keywords:
Heat equation,
boundary element method,
error estimate

Received by editor(s):
January 4, 1994

Received by editor(s) in revised form:
January 26, 1996, and February 18, 1997

Additional Notes:
This work was supported by the National Natural Science Foundation of China.

Article copyright:
© Copyright 1999
American Mathematical Society